![精品解析2022年京改版七年级数学下册第五章二元一次方程组同步测试试题(含详解)第1页](http://www.enxinlong.com/img-preview/2/3/12698714/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第五章二元一次方程组同步测试试题(含详解)第2页](http://www.enxinlong.com/img-preview/2/3/12698714/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第五章二元一次方程组同步测试试题(含详解)第3页](http://www.enxinlong.com/img-preview/2/3/12698714/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩20页未读,
继续阅读
2020-2021学年第五章 二元一次方程组综合与测试随堂练习题
展开这是一份2020-2021学年第五章 二元一次方程组综合与测试随堂练习题,共23页。试卷主要包含了下列方程中,①x+y=6;②x等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )
A.(y+2)+2y=0B.(y+2)﹣2y=0C.x=x+2D.x﹣2(x﹣2)=0
2、已知二元一次方程组则( )
A.6B.4C.3D.2
3、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )
A.4B.3C.2D.1
4、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个B.2个C.3个D.4个
5、关于的二元一次方程组的解满足,则k的值是( )
A.2B.C.D.3
6、根据大马和小马的对话求大马和小马各驮了几包货物.
大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你1包呢!”
大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”
小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )
A.x+1=2yB.x+1=2(y﹣1)
C.x﹣1=2(y﹣1)D.y=1﹣2x
7、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A.B.
C.D.
8、关于x,y的方程是二元一次方程,则m和n的值是( )
A.B.C.D.
9、下列各方程中,是二元一次方程的是( )
A.=y+5xB.3x+2y=2x+2yC.x=y2+1D.
10、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )
A.6B.8C.10D.12
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
2、一个两位数,个位上的数字与十位上的数字之和是10,把这个两位数的个位和十位上的数字调换位置后,得到的数比原来大18,则调换后的数为____.
3、节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售.其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价.商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个.已知每个鲜果礼盘的成本价定为各水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等.某单位元旦节发福利,准备给每个员工发一个鲜果礼盒.采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间.该水果店通过核算,此次订单的利润率为,则该单位一共有________名员工.
4、已知关于x,y的方程组满足,则k =_____.
5、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销量比第一天的销量减少了.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.
三、解答题(5小题,每小题10分,共计50分)
1、在解方程组时,由于小明看错了方程①中的a,得到方程组的解为,小华看错了方程②中的b,得到方程组的解为x=2,y=1.
(1)求a、b的值;
(2)求方程组的正确解.
2、已知关于x,y的二元一次方程组与有相同的解.
(1)求x,y的值;
(2)求的值.
3、解下列方程组:
(1);
(2).
4、解下列方程组:
(1);
(2).
5、解下列方程组:
(1)
(2)
---------参考答案-----------
一、单选题
1、B
【分析】
把x﹣2y=0中的x换成(y+2)即可.
【详解】
解:用代入消元法解二元一次方程组,将①代入②消去x,
可得方程(y+2)﹣2y=0,
故选:B.
【点睛】
此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.
2、D
【分析】
先把方程的②×5得到③,然后用③-①即可得到答案.
【详解】
解:,
把②×5得:③,
用③ -①得:,
故选D.
【点睛】
本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.
3、C
【分析】
先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.
【详解】
解:由题意得:,
联立,
由①②得:,
解得,
将代入①得:,
解得,
将代入方程得:,
解得,
故选:C.
【点睛】
本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.
4、A
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
5、B
【分析】
解方程组,用含的式子表示,然后将方程组的解代入即可.
【详解】
解:,
①-②得:,
∵,
∴,
解得:,
故选:B.
【点睛】
本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.
6、B
【分析】
设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.
【详解】
解:设大马驮x袋,小马驮y袋.
根据题意,得.
故选:B.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
7、B
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
8、C
【分析】
根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.
【详解】
解:由题意可得:,即
①+②得:,解得
将代入①得,
故
故选:C
【点睛】
此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.
9、D
【分析】
根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.
【详解】
解:A、不是整式方程;故错误.
B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.
C、未知数y最高次数是2;故错误.
D、是二元一次方程,故正确.
故选:D.
【点睛】
本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.
10、D
【分析】
设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.
【详解】
解:设甲组人数为人,乙组人数为人,
由题意得:,
将①代入②得:,
解得,
即原来乙组的人数为12人,
故选:D.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
二、填空题
1、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
2、64
【解析】
【分析】
设原来两位数的十位为x,个位为y,根据个位上的数字与十位上的数字之和为10,把个位上的数字与十位上的数字调换位置后,得到新的两位数比原数大18,列方程组求解.
【详解】
解:设原来两位数的十位为x,个位为y,
由题意得, ,
解得:,
即调换后的数为64.
故答案为:64.
【点睛】
本题考查了二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
3、140
【解析】
【分析】
设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,然后由题意易得,则有甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,进而可得甲的利润为元,乙的利润为元,利润率为,丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,则根据“订单的利润率为”列出方程,最后根据“预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间”来求解即可.
【详解】
解:设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,由题意得:
,解得:,
∴甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,
∴甲的利润为元,乙的利润为元,则有它的利润率为,进而可得丙的利润为元,
设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,由题意得:
,
化简得:,
∴,
∵预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,
∴,即,
解得:,
∵m为正整数,
∴m的值可能为36、37、38、39、40、41、42、43、44,
∵n为正整数,
∴是6的倍数,
∴,
∴该单位一共有80+40+20=140(名);
故答案为140.
【点睛】
本题主要考查三元一次方程组的应用及一元一次不等式的应用,熟练掌握利用消元思想及不定方程的求解方法是解题的关键.
4、4
【解析】
【分析】
将方程组重新组合,求出关于x、y的方程组,再代入求出k即可.
【详解】
解:关于x,y的方程组满足,
∴,
∴①+②得:x=1,
把x=1代入①得y=2,
,
∴=4.
故答案为:4.
【点睛】
本题考查了解二元一次方程组的解满足二元一次方程,重新组合能求出x、y的值是解此题的关键.
5、
【解析】
【分析】
设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可.
【详解】
解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,
,, 则
第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,
,即
则
第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元
即
即
或
为整数,
解得或
洁柔体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则
第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,
即
解得
都是整数,则能被和整除的数即能被整除
故答案为:14960
【点睛】
本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键.
三、解答题
1、(1),;(2) ,
【分析】
(1)根据方程组的解的定义,应满足方程②,x=2,y=1应满足方程①,将它们分别代入方程②①,就可得到关于a,b的二元一次方程组,解得a,b的值;
(2)将a,b代入原方程组,求解即可.
【详解】
解:(1)将代入②得,解得:
将x=2,y=1代入①得,解得: ,
∴,;
(2)方程组为:,
①+②得: ,
,
解得: ,
将代入①得: ,
,
解得: ,
∴方程组的解为 .
【点睛】
本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.
2、(1),(2)1.
【分析】
(1)首先联立两个方程组中不含a、b的两个方程求得方程组的解,
(2)根据(1)中方程组的解代入两个方程组中含a、b的两个方程从而得到关于a,b的方程组,求出a、b的值,代入代数式中求值即可.
【详解】
解:(1)联立不含a、b的两个方程得,
解这个方程组得,
(2)把,代入得,
解得:,
∴.
【点睛】
本题考查了二元一次方程组的解以及解二元一次方程组,代数式的值,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.
3、(1) ;(2)
【分析】
利用加减消元法,即可求解.
【详解】
解:(1)
由①×3-②,得: ,
解得: ,
把代入①,得: ,
解得: ,
所以方程组的解为 ;
(2),
由①×2-②×3,得: ,
解得: ,
把代入②,得: ,
解得: ,
所以方程组的解为 .
【点睛】
本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——代入消元法和加减消元法是解题的关键.
4、(1);(2)
【分析】
(1)根据代入消元法计算即可;
(2)根据加减消元法计算即可;
【详解】
解:(1),
把①代入②中,得到,
解得:,
把代入①中,得:,
∴方程组的解集为;
(2),
得:,
解得:,
把代入②中,得:,
∴方程组的解为.
【点睛】
本题主要考查了二元一次方程组的求解,准确计算是解题的关键.
5、(1);(2).
【分析】
(1)方程整理后利用加减消元法求出解即可;
(2)方程利用加减消元法求出解即可.
【详解】
解:(1),
方程组整理得:
①-②×2得:x=-1,
把x=-1代入②得:-1+y=4,
解得:y=5,
则方程组的解为;
(2),
①×2-②得:7y=35,
解得:y=5,
把y=5代入①得:2x+25=25,
解得:x=0,
则方程组的解为.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
相关试卷
北京课改版七年级下册第五章 二元一次方程组综合与测试精练:
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了小明在解关于x,下列方程组为二元一次方程组的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题:
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共18页。试卷主要包含了方程组的解是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试习题:
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试习题,共20页。试卷主要包含了已知关于x,若方程组的解为,则方程组的解为,解方程组的最好方法是等内容,欢迎下载使用。