数学七年级下册第五章 二元一次方程组综合与测试课堂检测
展开
这是一份数学七年级下册第五章 二元一次方程组综合与测试课堂检测,共18页。试卷主要包含了如果x,小明在解关于x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )A.k B.k C.k D.k2、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=83、若是方程的解,则等于( )A. B. C. D.4、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想5、关于x,y的方程是二元一次方程,则m和n的值是( )A. B. C. D.6、如果x:y=3:2,并且x+3y=27,则x与y中较小的值是( ).A.3 B.6 C.9 D.127、小明在解关于x、y的二元一次方程组时得到了正确结果.后来发现、处被墨水污损了,请你帮他计算出、处的值分别是( ).A.1、1 B.2、1 C.1、2 D.2、28、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A.3种 B.4种 C.5种 D.6种9、已知 是方程的一个解, 那么的值是( ).A.1 B.3 C.-3 D.-110、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”则哥哥的年龄是___________岁.2、已知是二元一次方程组的解,则mn的相反数为______.3、已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的和为 _____.4、若关于x、y的方程是二元一次方程,则m=_______.5、某个“卡通玩具”自动售货机出售A、B、C三种玩具,A、B、C三种玩具的单价分别是3元/个、5元/个,6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A玩具的数量(单位:个)是B玩具数量的2倍,B玩具的数量(单位:个)是C玩具数量的2倍.某个周六,A、B、C三种玩具的上货量分别比一个工作日的上货量增加了50%,70%、50%,且全部售出.但是由于软件出错,发生了一起错单(即消费者按某种玩具一个的价格投币,但是取得了另一种玩具1个),结果这个周六的销售收入比一个工作日的销售收入多了958元,则这个“卡通玩具”自动售货机一个工作日的销售收入是____元.三、解答题(5小题,每小题10分,共计50分)1、解下列方程组:(1) (2)2、解方程组:3、已知方程组的解也是关于、的二元一次方程的一组解,求的值.4、列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:类别/单价成本价(元/箱)销售价(元/箱)A品牌2032B品牌3550(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?5、(1)解方程组;(2)解不等式组. ---------参考答案-----------一、单选题1、A【分析】根据得出,,然后代入中即可求解.【详解】解:,①+②得,∴③,①﹣③得:,②﹣③得:,∵,∴,解得:.故选:A.【点睛】本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.2、A【分析】把代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,;把代入得,,解得,;故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.3、B【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.4、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.5、C【分析】根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.【详解】解:由题意可得:,即①+②得:,解得将代入①得,故故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.6、B【分析】把x:y=3:2变形为x=y,联立解方程组即可.【详解】解:把x:y=3:2变形为:x=y.把x=y代入x+3y=27中:y=6.∴x=9.∴x、y中较小的是6.故选:B.【点睛】本题实质是解二元一次方程组,掌握代入消元法是解题的关键.7、B【分析】将方程组的解代入方程求解即可.【详解】将代入,得,解之得.故选:B.【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.8、A【分析】设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x,y由题意得:,即,∵x、y都是正整数,∴当x=1时,y=6,当x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.9、A【分析】把x=1,y=-1代入方程2x-ay=3中,解关于a的方程,即可求出a的值.【详解】解:把x=1,y=-1代入方程2x-ay=3中,得:
2×1-a×(-1)=3,
2+a=3,
a=1.
故选:A.【点睛】本题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.10、B【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.二、填空题1、15【解析】【分析】设此时弟弟岁,哥哥岁,根据题意,因为弟弟与哥哥的年龄差等于哥哥与20岁的年龄差,哥哥与弟弟的年龄差等于弟弟与5岁的年龄差,列出二元一次方程组求解即可.【详解】设此时弟弟岁,哥哥岁,由题意:,解得:,∴此时哥哥的年龄是15岁,故答案为:15.【点睛】本题考查二元一次方程组的实际应用,理解题意,准确建立二元一次方程组并求解是解题关键.2、-12【解析】【分析】把代入方程组求出m,n即可;【详解】把代入中得:,得:,解得:,把代入①中得:,∴方程组的解是,∴,∴mn的相反数是;故答案是:.【点睛】本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.3、【解析】【分析】解二元一次方程组,根据x>y列出不等式,即可求得,解不等式组,根据不等式组无解求得,进而根据题意求得符合条件的整数,求和即可【详解】解:①+②得解得,将代入②得:解得解得由解不等式③得:解不等式④得:不等式组无解解得则所有符合条件的整数a为:,其和为故答案为:7【点睛】本题考查了解二元一次方程组,解一元一次不等式组,求不等式组的整数解,根据题意求得符合题意的整数是解题的关键.4、1【解析】【分析】根据二元一次方程定义可得:|m|=1,且m-1≠0,进而可得答案.【详解】∵关于x、y的方程是二元一次方程,∴|m|=1,且m-1≠0,解得:m=1,故答案为:1【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.5、1680【解析】【分析】设C玩具数量工作日时有x个,表示出A、B两种玩具数量工作日数量为4x个、2x个,A、B、C三种玩具周六数量分别为:6x(个),3.4x(个),1.5x(个),继而得出工作日销售收入和周六销售收入及不发生任何故障时多出的钱数,而由于发生故障,周六销售额变化,据此设变化了y元,得16x+y=958,其中x为整数,进而求得工作日销售收入,即可求得y的值.【详解】解:设C玩具数量工作日时有x个,根据题意,得A、B两种玩具数量工作日时4x个、2x个,A、B、C三种玩具周六数量分别为:4x(1+50%)=6x(个),2x(1+70%)=3.4x(个),x(1+50%)=1.5x(个),∴工作日销售收入:3×4x+5×2x+6x=28x(元),周六销售收入:3×6x+5×3.4x+6×1.5x=44x(元),当不发生任何故障时,多出44x-28x=16x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则16x+y=958,其中x为整数,y=1、2、3、-1、-2、-3,当y=-2时,x=60,所以工作日销售收入为:28×60=1680(元).故答案为:1680.【点睛】本题考查了一元一次方程的应用以及二元一次方程的应用,解决本题的关键是根据题意设未知数找到等量关系.三、解答题1、(1);(2)【分析】(1)两个方程相加,得出,求出代入②求出y即可;(2)①×4-②×3,得出,求出代入①求出x即可.【详解】1),①+②得:,解得:,把代入②得:,解得:,故方程组的解为;(2),①×4-②×3得:,解得:,把代入①得:,解得:,故方程组的解为.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.2、【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:用①-②得:,把代入②中得:,解得,∴方程组的解为:.【点睛】本题主要考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.3、.【分析】利用加减消元法求出方程组的解得到x与y的值,代入方程计算即可求出a的值.【详解】解:方程组,②+①得:,解得:,代入①中,解得:,把,代入方程得,,解得:.【点睛】此题考查了加减消元法解二元一次方程组,以及二元一次方程的解,解一元一次方程,方程组的解即为能使方程组中两方程成立的未知数的值.4、(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,根据该超市购进A、B两种品牌的矿泉水共600箱且共花费15000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用总利润=每箱的销售利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意得:,解得:.答:该大型超市购进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)(元).答:全部销售完600箱矿泉水,该超市共获得7800元利润.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5、(1);(2)【分析】(1)对方程组进行化简,然后利用加减消元法求解即可;(2)分别求得每个不等式的解集,然后取共同的部分即可.【详解】解:(1)方程组,可化简为①+②式得,,解得将代入①式得:,解得故方程组的解为(2)不等式组,解不等式,可得:解不等式,可得:所以不等式组的解集为【点睛】此题考查了二元一次方程组和一元一次不等式组的求解,解题的关键是熟练掌握方程组和不等式组的求解方法.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课时练习,共21页。试卷主要包含了有铅笔等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共22页。试卷主要包含了如果x等内容,欢迎下载使用。
这是一份初中数学第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。