


初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后测评
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后测评,共18页。试卷主要包含了已知,则等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
2、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为( )
A. B.
C. D.
3、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元 B.1.05元 C.0.95元 D.0.9元
4、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( )
﹣3 | y |
|
| 1 |
|
4 |
| x |
A.15 B.17 C.19 D.21
5、下列方程组中,是二元一次方程组的是( )
A. B. C. D.
6、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
7、已知,则( )
A. B. C. D.
8、已知代数式,当时,其值为4;当时,其值为8;当x=2时,其值为25;则当时,其值为( ).
A.4 B.8 C.62 D.52
9、下列方程组中是三元一次方程组的是( ).
A. B.
C. D.
10、若是方程的解,则等于( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,用含的式子表示,其结果是_______.
2、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
3、若x、y的值满足,,,则k的值等于________.
4、已知关于x的方程=1+中,a、b、k为常数,若无论k为何值,方程的解总是x=1,则a+b的值为 ___.
5、小明心里想好一个两位数,将十位数字乘2,然后加3,再将所得的新数乘5,最后加原两位数的个位数字,结果是94.算算看小明心里想的两位数是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.
(1)求紫外线消毒灯和体温检测仪的单价各为多少元;
(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?
2、运输公司要把120吨物资从A地运往B地,有甲,乙,丙三种车型供选择,每种型号的车辆的运载量和运费如下表所示.(假设每辆车均满载)
车型 | 甲 | 乙 | 丙 |
运载量(吨/辆) | 5 | 8 | 10 |
运费(元/辆) | 450 | 600 | 700 |
解答下列问题:
(1)安排甲型车8辆,乙型车5辆,丙型车___________辆可将全部物资一次运完;
(2)若全部物资仅用甲、乙型车一次运完,需运费9600元,则甲、乙型车各需多少辆?
(3)若用甲、乙,丙型车共14辆同时参与运送,且一次运完全部物资,则三种型号的车各需多少辆?此时总运费为多少元?
3、代数式,当x=-2时,代数式的值为4;当x=2时,代数式的值为10,则x=-1时,求代数式的值.
4、解方程组:.
5、解方程组
(1) (2)
---------参考答案-----------
一、单选题
1、C
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
2、D
【分析】
若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.
【详解】
解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:
,
故选D.
【点睛】
此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.
3、B
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
4、D
【分析】
根据题意列出两条等式,求出x,y的值即可.
【详解】
根据题意可得:
,
解得,
x+2y=5+2×8=5+16=21,
故答案为:D.
【点睛】
本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.
5、C
【分析】
根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.
【详解】
解:A. 第二个方程中的是二次的,故本选项错误;
B.方程组中含有3个未知数,故本选项错误;
C. 符合二元一次方程组的定义,故本选项正确;
D. 第二个方程中的xy是二次的,故本选项错误.
故选C.
【点睛】
:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.
6、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
7、B
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
8、D
【分析】
将已知的三组和代数式的值代入代数式中,通过联立三元一次方程组 ,求出、、的值,然后将代入代数式即可得出答案.
【详解】
由条件知:,
解得:.
当时,.
故选:D.
【点睛】
本题考查三元一次方程组的解法,解题关键是掌握三元一次方程组的解法.
9、D
【分析】
三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.
【详解】
解:A、a的最高次数是2,选项错误;
B、x、y、z的最高次数都是2,选项错误;
C、每个方程都是分式方程,选项错误;
D、符合题意,选项正确.
故选:D
【点睛】
本题考查三元一次方程组的识别,牢记定义是解题的切入点.
10、B
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
二、填空题
1、
【解析】
【分析】
先将化成,然后再代入化简即可.
【详解】
解:∵,
∴,
∴,
故答案是:.
【点睛】
本题考查了利用代入消元法解二元一次方程及其应用,熟练掌握运算法则是解本题的关键.
2、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
3、-4
【解析】
【分析】
由题意可联立方程组,由①②可解出、的值,代入③即可得出答案.
【详解】
由题意可得:,
①×3+②得:,
解得:,
代入①得:,
将,,代入③得,,
解得.
【点睛】
本题考查解二元一次方程组,掌握把k看作常数,熟练掌握二元一次方程组的解法是解题的关键.
4、
【解析】
【分析】
将代入方程,然后令的系数为0,得到关于的二元一次方程组,求解即可.
【详解】
解:将代入方程=1+得
由题意可得:,解得
则
故答案为:
【点睛】
此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.
5、79
【解析】
【分析】
设小明想的两位数的个位数字为a,十位数字为b,根据题意列出方程,然后根据1≤b≤9,0≤a≤9且a,b为整数,从而确定二元一次方程的解.
【详解】
解:设小明想的两位数的个位数字为a,十位数字为b,由题意可得:
5(2b+3)+a=94,
整理,可得:10b+a=79,
∵1≤b≤9,0≤a≤9且a,b为整数,
∴a=9,b=7,
∴小明心里想的两位数是79.
故答案为:79
【点睛】
本题主要考查了二元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
三、解答题
1、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案.
【分析】
(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;
(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论.
【详解】
解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,
则由题意得,
解得.
答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;
(2)设购买紫外线消毒灯台,则购买体温检测仪个.
,
解得:,
∵为正整数,
∴该校有5种购买方案.
【点睛】
本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键.
2、(1)4;(2)需要甲型车8辆,乙型车10辆;(3)需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.
【分析】
(1)根据三种车型的运载量列出式子,计算乘除法与减法即可得;
(2)设需要甲型车辆,乙型车辆,根据“120吨物资”和“运费9600元”建立方程组,解方程组即可得;
(3)设需要甲型车辆,乙型车辆,从而可得需要丙型车辆,再根据“一次运完全部物资”建立关于的等式,结合为正整数进行分析即可得.
【详解】
解:(1),
,
,
(辆),
即安排甲型车8辆,乙型车5辆,丙型车4辆可将全部物资-次运完,
故答案为:4;
(2)设需要甲型车辆,乙型车辆,
由题意得:,
解得,符合题意,
答:需要甲型车8辆,乙型车10辆;
(3)设需要甲型车辆,乙型车辆,则需要丙型车辆,
由题意得:,
整理得:,
则,
均为正整数,
只能等于5,
,,
此时总运费为(元),
答:需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.
【点睛】
本题考查了二元一次方程组的应用等知识点,正确建立方程组是解题关键.
3、
【分析】
先根据代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,得到,解方程求出,由此求解即可.
【详解】
解:∵代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,
∴
解得,,
∴ 代数式为即为,
当x=-1代入,得.
【点睛】
本题主要考查了代数式求值和解二元一次方程组,解题的关键在于能够根据题意建立关于a、b的二元一次方程组求出a、b的值.
4、
【分析】
方程组利用加减消元法求出解即可.
【详解】
解:,
①×5﹣②×8得:13x=78,
解得:x=6,
把x=6代入①得:54+8y=﹣2,
解得:y=﹣7,
则方程组的解为.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
5、(1);(2).
【分析】
(1)利用代入消元法解方程组即可得;
(2)利用加减消元法解方程组即可得.
【详解】
解:(1),
将①代入②得:,
解得,
将代入①得:,即,
则方程组的解为;
(2),
由①②得:,
解得,
将代入①得:,
解得,
则方程组的解为.
【点睛】
本题考查了解二元一次方程组,熟练掌握消元法是解题关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试一课一练,共19页。试卷主要包含了已知是二元一次方程,则的值为,若是方程组的解,则的值为,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了解方程组的最好方法是,如图,9个大小,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了用代入消元法解关于,如果x,已知二元一次方程组则等内容,欢迎下载使用。