北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。
京改版七年级数学下册第五章二元一次方程组专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )
A.﹣ B. C. D.﹣
2、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )
A. B.
C. D.
3、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
4、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米 B.80厘米 C.100厘米 D.120厘米
5、《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系,其中卷八方程[七]中记载:“今有牛五,羊二,直金十两;牛二、羊五,直金八两,问牛、羊直金几何?”译文:“假设有5头牛,2只羊共值金10两;2头牛,5只羊共值金8两,问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是( )
A. B. C. D.
6、已知是二元一次方程组的解,则m+n的值为( )
A. B.5 C. D.
7、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )
A. B. C. D.
8、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A. B.
C. D.
9、下列方程中,是关于x的一元二次方程的是( )
A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=0
10、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,一个长方形图案是由8个大小相同的小长方形拼成,宽为60cm,设每个小长方形的长为cm,宽为cm,可列方程组为______.
2、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab的值为_____.
3、已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的和为 _____.
4、若x、y的值满足,,,则k的值等于________.
5、已知方程组,则x+y的值是______.
三、解答题(5小题,每小题10分,共计50分)
1、解下列方程或方程组:
(1)4x﹣2=2x+3.
(2)=2.
(3).
2、如果知道了两个数的和与差,你一定能求出这两个数吗?说说你的理由.
3、某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有30人没有座位;若租用同样数量的60座客车,则多出两辆车,且其余客车恰好坐满.已知45座客车租金为每辆450元,60座客车租金为每辆650元,问:
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)请你设计一种租车方案,要求每位游客都有座位,费用又合算?
4、(1)解方程组:
(2)解不等式组
5、解下列方程组:
(1)
(2)
---------参考答案-----------
一、单选题
1、B
【分析】
解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.
【详解】
解:,
①+②得:2x=14k,即x=7k,
将x=7k代入①得:7k+y=5k,即y=﹣2k,
将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,
解得:k=.
故选:B.
【点睛】
此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.
2、B
【分析】
设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可
【详解】
解:设馒头每个元,包子每个元,根据题意得
故选B
【点睛】
本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.
3、C
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
4、D
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
5、A
【分析】
根据题意可直接进行求解.
【详解】
解:设每头牛值金x两,每只羊值金y两,由题意得:;
故选A.
【点睛】
本题主要考查二元一次方程组的应用,熟练掌握二元一次方程的应用是解题的关键.
6、B
【分析】
根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.
【详解】
解:∵是二元一次方程组的解,
∴,
解得,
∴m+n=5.
故选:B.
【点睛】
本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.
7、A
【分析】
观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.
【详解】
解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,
故选:A.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.
8、B
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
9、A
【分析】
根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.
【详解】
解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;
B、含有两个未知数,不是一元二次方程,不符合题意;
C、,含有一个未知数,不是一元二次方程,不符合题意;
D、当时,不是一元二次方程,不符合题意;
故选:A
【点睛】
此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.
10、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
二、填空题
1、
【解析】
【分析】
根据题意可知,小长方形的一个长+一个宽等于大长方形的宽,2个小长方形的长等于大长方形的长,一个小长方形的长+三个小长方形的宽等于大长方形的长,由此即可列出方程求解.
【详解】
解:由题意得:,
故答案为:.
【点睛】
本题主要考查了列二元一次方程组,解题的关键在于能够准确读懂题意.
2、16
【解析】
【分析】
根据图1和图2分析可得,,即可的值,进而可得的值
【详解】
由图1可得长方形的长为,宽为,
根据图2可知大长方形的宽可以表示为
解得
故答案为:
【点睛】
本题考查了二元一次方程组,根据图中信息求得的值是解题的关键.
3、
【解析】
【分析】
解二元一次方程组,根据x>y列出不等式,即可求得,解不等式组,根据不等式组无解求得,进而根据题意求得符合条件的整数,求和即可
【详解】
解:
①+②得
解得,
将代入②得:
解得
解得
由
解不等式③得:
解不等式④得:
不等式组无解
解得
则所有符合条件的整数a为:,其和为
故答案为:7
【点睛】
本题考查了解二元一次方程组,解一元一次不等式组,求不等式组的整数解,根据题意求得符合题意的整数是解题的关键.
4、-4
【解析】
【分析】
由题意可联立方程组,由①②可解出、的值,代入③即可得出答案.
【详解】
由题意可得:,
①×3+②得:,
解得:,
代入①得:,
将,,代入③得,,
解得.
【点睛】
本题考查解二元一次方程组,掌握把k看作常数,熟练掌握二元一次方程组的解法是解题的关键.
5、
【解析】
【分析】
利用加减消元法求出二元一次方程组的解,然后进行代数式求值即可得到答案.
【详解】
解:
把② ×2-①得:,解得
把代入① 中解得
∴.
故答案为:.
【点睛】
本题主要考查了利用加减消元法解二元一次方程组,代数式求值,解题的关键在于能够熟练掌握加减消元法.
三、解答题
1、(1)x=;(2)x=﹣4;(3)
【分析】
(1)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;
(2)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;
(3)用加减消元法求解即可.
【详解】
解:(1)4x﹣2=2x+3,
移项,得4x﹣2x=3+2,
合并同类项,得2x=5,
系数化为1,得x=;
(2)=2,
去分母,得4(x+1)﹣9x=24,
去括号,得4x+4﹣9x=24,
移项,得4x﹣9x=24﹣4,
合并同类项,得﹣5x=20,
系数化为1,得x=﹣4;
(3),
②﹣①×3,得x=﹣1,
把x=﹣1代入①,得﹣1﹣y=2,
解得y=﹣3,
故方程组的解为.
【点睛】
本题考查了一元一次方程的解法,以及二元一次方程组的解法,熟练掌握求解步骤是解答本题的关键.解二元一次方程组的基本思路是消元,消元的方法有:加减消元法和代入消元法两种.
2、能,答案不唯一,理由见解析
【分析】
不妨设,利用加减消元法进行求解.
【详解】
解:(本题答案不唯一)假设这两个数分别为x和y,
不妨设,
联立:,
①②得:,
解得:,
将代入①中,
得,
解得:,
.
【点睛】
本题考查了求解二元一次方程组,解题的关键是掌握加减消元法.
3、(1)480人,10辆45座客车;(2)租8辆45座客2辆60座客车车费用4900
【分析】
(1)本题中的等量关系为:45×45座客车辆数+30=游客总数,60×(60座客车辆数-2)=游客总数,据此可列方程组求出第一小题的解;
(2)设租用45座客车辆,60座客车辆,依题意得,再讨论出符合条件的整数解,然后根据价格计算出费用即可得到答案.
【详解】
解:解:(1)设这批游客的人数是x人,原计划租用45座客车y辆.
根据题意,得 ,
解这个方程组,得.
答:这批游客的人数480人,原计划租45座客车10辆;
(2)设租辆45座,辆60座,则
整理得:
当时,
则全部租45座客车:480÷45≈11(辆),
所以需租11辆,租金为(元),
当时,则全部租60座客车:8(辆),
所以需租8辆,租金为(元),
当时,则租车费用为:(元),
当时,则租车费用为:(元),
所以租45座的客车8辆,租2辆60座的客车,租车费用最低.
【点睛】
本题考查的是二元一次方程组的应用,二元一次方程的正整数解问题,掌握利用二元一次方程(组)解决问题是解本题的关键.
4、(1);(2)﹣2﹤x≤3.
【分析】
(1)方程运用加减消元法求解即可;
(2)分别求出每个不等式的解集,再取它们的公共部分即可
【详解】
解:(1)
①+②×5得:27x=23+17×5,
解得:x=4,
将x=4代入②中,得:20﹣y=17,
解得:y=3,
∴原方程组的解为.
(2) ,
解:解①得:x﹥﹣2,
解②得:x≤3,
∴不等式组的解集为:﹣2﹤x≤3
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5、(1);(2)
【分析】
(1)用加减消元法解二元一次方程组即可;
(2)先化简方程组,再用加减消元解方程组即可.
【详解】
解:(1),
②-①得:,
解得,
把代入①得:,
解得:,
∴方程组的解为;
(2),
由②可得y=2-x,
把y=2-x代入①,可得x=-1,
把x=-1代入y=2-x,可得y=3,
∴方程组的解为.
【点睛】
本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.