北京课改版七年级下册第五章 二元一次方程组综合与测试习题
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试习题,共23页。试卷主要包含了如果x,已知是二元一次方程,则的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中是二元一次方程的是( )A. B. C. D.2、方程x+y=6的正整数解有( )A.5个 B.6个 C.7个 D.无数个3、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )A.1,0 B.0,﹣1 C.2,1 D.2,﹣34、《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为( )A. B.C. D.5、如果x:y=3:2,并且x+3y=27,则x与y中较小的值是( ).A.3 B.6 C.9 D.126、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x7、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )A.1 B.﹣1 C.2 D.﹣28、如果的解都是正数,那么a 的取值范围是( ).A.a<2; B.; C. ; D. 9、已知是二元一次方程,则的值为( )A. B.1 C. D.210、已知代数式,当时,其值为4;当时,其值为8;当x=2时,其值为25;则当时,其值为( ).A.4 B.8 C.62 D.52第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某商铺去批发市场进货甲、乙、丙三种商品,商品甲、乙、丙的进货量之比为4:2:3,且均为整数.回到商铺后,将三种商品的进价标签混淆了(进价均为整数).若随机抽出两个标签,求出进价之和,再乘以购进商品甲的进货量,为2736元;若随机抽出两个标签,求出进价之和,再乘以购进商品乙的进货量,为1596元;若随机抽出两个标签,求出进价之和,再乘以购进商品丙的进货量,为1368元.则三种商品的进价按有小到大的比为__________.2、已知方程组和有相同的解,则ab=_____.3、若,则________.4、元旦期间,某商场开业,为了吸引更多的人流量,该商场决定举行迎宾抽奖活动.活动规则如下:只要在该商场消费一定的金额,消费者就可以凭借小票去抽奖中心兑换盲盒(盲盒的形状,大小,重量等各种属性完全相同),且盲盒里面分别装有50元、30元、10元、5元的奖金.开业当天商场准备了400个盲盒,且全部被消费者领完.经统计,开业当天上午领取的盲盒中所含奖金的总金额为950元,其中领取含有30元的盲盒的数量是含有10元的盲盒数量的一半,领取含50元的盲盒的数量多于1个,少于5个;下午领取的盲盒中所含奖金的总金额是1240元,下午领取含5元的盲盒的数量比上午领取含5元的盲盒的数量少10个,领取含10元的盲盒的数量是上午领取含10元的盲盒的数量的2倍,领取含30元的盲盒的数量比上午领取含30元的盲盒的数量多5个,含50元的盲盒只有1个被抽中,剩余的盲盒则全被晚上领取完毕,则晚上被领取的盲盒的数量是______.5、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有2千克A粗粮,3千克B粗粮,3千克C粗粮;乙种粗粮每袋装有4千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A、B、C三种粗粮的成本价之和.已知每袋甲种粗粮的成本比每袋乙种粗粮的成本高10%,每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;当电商销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的数量之比是______.三、解答题(5小题,每小题10分,共计50分)1、已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.2、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?3、解方程组:4、用加减消元法解下列方程组:(1) (2) (3) (4)5、用加减消元法解下列方程组:(1) (2) (3) (4) ---------参考答案-----------一、单选题1、B【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】中x的次数为2,故A不符合题意;是二元一次方程,故B符合题意;中不是整式,故C不符合题意;中y的次数为2,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.2、A【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可【详解】解:方程的正整数解有,,,,共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.3、C【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴ ,解得:. 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.4、D【分析】根据题目中的等量关系列出二元一次方程组即可.【详解】解:设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为.故选:D.【点睛】此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系.5、B【分析】把x:y=3:2变形为x=y,联立解方程组即可.【详解】解:把x:y=3:2变形为:x=y.把x=y代入x+3y=27中:y=6.∴x=9.∴x、y中较小的是6.故选:B.【点睛】本题实质是解二元一次方程组,掌握代入消元法是解题的关键.6、B【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.7、C【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立,②-①,得-3y=3,∴y=-1,把y=-1代入①,得x-1=3∴x=4,∴,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.8、C【分析】先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可.【详解】解:,①×2得,③+②得,把代入①得,,∵的解都是正数,∴,解得.故选择C.【点睛】本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.9、C【分析】根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.【详解】解:∵是二元一次方程,∴ ,且 ,解得: .故选:C【点睛】本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.10、D【分析】将已知的三组和代数式的值代入代数式中,通过联立三元一次方程组 ,求出、、的值,然后将代入代数式即可得出答案.【详解】由条件知:,解得:.当时,.故选:D.【点睛】本题考查三元一次方程组的解法,解题关键是掌握三元一次方程组的解法.二、填空题1、3:5:9【解析】【分析】由题意设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,继而依据进货量均为整数,进价均为整数得出三种商品的进价后即可得出答案.【详解】解:设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,则随机抽出两个标签进价之和可知:,由题意可得第一次抽出两个标签进价之和为:,第二次抽出两个标签进价之和为:,第三次抽出两个标签进价之和为:,又因为,所以< < ,即第一、二、三次抽出两个标签进价之和分别为:a+c、b+c、a+b,进而可得, ①+②+③得出,且,进货量均为整数,进价均为整数可得,则有,解得:,所以三种商品的进价按有小到大的比为:.故答案为:3:5:9.【点睛】本题考查不定方程的应用,读懂题意根据题意列出方程并利用消元思维进行分析是解题的关键.2、-1【解析】【分析】根据方程组和有相同的解,所以把和组成方程组求出 x、y 的值,再把 x、y 的值代入其他两个方程 和即可求出a 、 b 的值,即可得答案.【详解】解:∵方程组和有相同的解,∴方程组的解也是它们的解,①× 2+②,得:2x+x= 4-7,解得:x=-1,把x = -1代入①,得:-1+y=2,解得:y=3,把x =-1, y=3代入得:-a+3= 4解得:a= -1,把x =-1, y=3代入得:-1+3b=8,解得:b=3,∴ab=(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.3、-7【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可.【详解】解:∵,∴,解得:,∴-2-5=-7,故答案为:-7.【点睛】本题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解题的关键.4、206个【解析】【分析】设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,由下午领取的盲盒的总金额为1240元得,分三种情况:当上午领取的50元盲盒为2个时,3个时,4个时,分别解方程组求解即可.【详解】解:设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,其他盲盒领取的个数见表格, 上午领取的个数下午领取的个数50元盲盒 130元盲盒+510元盲盒y2y5元盲盒xx-10 由题意得,化简得,∵上午领取含50元的盲盒的数量多于1个,少于5个,∴当上午领取的50元盲盒为2个时,得,化简得,解方程组,得,∴晚上领取的盲盒的个数为206个;当上午领取的50元盲盒为3个时,得,化简得,解方程组,得,此时为小数,故舍去;当上午领取的50元盲盒为4个时,得,化简得,解方程组,得(舍去),综上,晚上领取的盲盒的个数为206个,故答案为:206个【点睛】此题考查二元一次方程组的实际应用,正确理解题意设未知数并列得方程组是解题的关键.5、10:9##【解析】【分析】设A的单价为x元,B的单价为y元,C的单价为z元,可得甲的成本,乙的成本;再求出甲、乙的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.【详解】解:设A的单价为x元,B的单价为y元,C的单价为z元,甲种粗粮的售价为m元,乙种粗粮的售价为n元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得甲一袋的成本是2x+3y+3z,乙一袋的成本是4x+2y+2z,2x+3y+3z=(4x+2y+2z) ×(1+10%),化简得,3x=y+z,甲一袋的成本是11x,乙一袋的成本是10x,∵每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.∴m-11x=(n-10x)(1+50%),当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;∴2(n-10x)(1+50%)+n-10x=(2×11x+10x)×25%,解得,n=12x,∴m=14x,甲一袋的售价为14x,乙一袋的售价为12x,根据甲乙的利润,得(14x﹣11x)a+(12x -10x)b=(11x a+10xb)×24%化简,得3a+2b=2.64a+2.4b0.36a=0.4ba:b=10:9,故答案为:10:9.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.三、解答题1、(1)﹣2<m≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x≤0,y<0,列出不等式求解即可;(2)先把原不等式移项得到(2m+1)x<2m+1.根据不等式(2m+1)x﹣2m<1的解为x>1,可得2m+1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组用①+②得:,解得③,把③代入②中得:,解得,∴方程组的解为:.∵x为非正数,y为负数,即x≤0,y<0,∴.解得﹣2<m≤3;(2)(2m+1)x﹣2m<1移项得:(2m+1)x<2m+1.∵不等式(2m+1)x﹣2m<1的解为x>1,∴2m+1<0,解得m.又∵﹣2<m≤3,∴m的取值范围是﹣2<m.又∵m是整数,∴m的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.2、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的 解得故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m件,根据题意得:(150-100)m+(400-300)(80-m)≥6500解得m≤30∵m为整数∴m的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.3、【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:用①-②得:,把代入②中得:,解得,∴方程组的解为:.【点睛】本题主要考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.4、(1) (2) (3) (4)【分析】(1)利用加减消元法,将方程①+②,即可求解;(2)利用加减消元法,将方程②-①×2,即可求解;(3)利用加减消元法,将方程①-②,即可求解;(4)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②得:9x=45,即x=5,把x=5代入①得:y=2,则方程组的解为;(2)②-①×2得:13y=65,即y=5,把y=5代入②得:x=则方程组的解为;(3)①-②得:12y=-36,即y=-3,把y=-3代入①得:x=则方程组的解为;(4)方程组整理得:①-②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,做题的关键是当未知数系数相等时将方程相减,未知数系数相反时将方程相加.5、(1) (2) (3) (4)【分析】(1)直接利用加法进行消元即可求解;(2)直接利用减法进行消元即可求解;(3)将方程整理后,直接利用加减消元法求解;(4)将方程整理后,直接利用加减消元法求解.【详解】解:(1)由得:将代入中得:∴原方程组的解为(2)得:将代入中得:∴原方程组的解为(3)得:③得:将代入中得:∴原方程组的解为(4);得:得:将代入中得:∴原方程组的解为【点睛】本题主要考查了加减消元法,熟练掌握加减消元法是解答此题的关键.
相关试卷
这是一份七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了若是关于x,下列方程是二元一次方程的是等内容,欢迎下载使用。
这是一份2021学年第五章 二元一次方程组综合与测试练习,共20页。试卷主要包含了二元一次方程组的解是,已知方程组的解满足,则的值为,用代入消元法解关于等内容,欢迎下载使用。
这是一份数学七年级下册第五章 二元一次方程组综合与测试同步测试题,共19页。试卷主要包含了解方程组的最好方法是,如果与是同类项,那么的值是,若是关于x等内容,欢迎下载使用。