初中北京课改版第五章 二元一次方程组综合与测试测试题
展开这是一份初中北京课改版第五章 二元一次方程组综合与测试测试题,共20页。试卷主要包含了二元一次方程组的解是,若是关于x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )
A.k B.k C.k D.k
2、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
3、如果的解都是正数,那么a 的取值范围是( ).
A.a<2; B.; C. ; D.
4、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
5、下列方程中,①;②;③;④,是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
6、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )
A.1,0 B.0,﹣1 C.2,1 D.2,﹣3
7、二元一次方程组的解是( )
A. B. C. D.
8、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )
A.-5 B.-1 C.9 D.11
9、下列各方程中,是二元一次方程的是( )
A.=y+5x B.3x+2y=2x+2y C.x=y2+1 D.
10、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
2、在《九章算术》的“方程”一章中,一次方程组是由算筹布置而成的,若图1所示的算筹图表示的方程组为,则图2所表示的方程组的解为__________.
3、若是方程2x+y=10的解,求6a+3b﹣4的值是 ___.
4、已知方程组的解也是方程 的解,则a= _____,b= ____ .
5、关于x的方程与的解相同,则k的值为____.
三、解答题(5小题,每小题10分,共计50分)
1、解下列方程组:
(1);
(2).
2、解方程组:
(1) (2)
3、定义数对(x,y)经过一种运算φ可以得到数对(x',y'),并把该运算记作φ(x,y)=(x',y'),其中(a,b为常数).例如,当a=1,且b=1时,φ(﹣2,3)=(1,﹣5).
(1)当a=1且b=1时,φ(0,1)= ;
(2)若φ(1,2)=(0,4),则a= ,b= ;
(3)如果组成数对(x,y)的两个数x,y满足二元一次方程2x﹣y=0,并且对任意数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.
4、解方程组或不等式组:
(1);
(2).
5、在解方程组时,由于小明看错了方程①中的a,得到方程组的解为,小华看错了方程②中的b,得到方程组的解为x=2,y=1.
(1)求a、b的值;
(2)求方程组的正确解.
---------参考答案-----------
一、单选题
1、A
【分析】
根据得出,,然后代入中即可求解.
【详解】
解:,
①+②得,
∴③,
①﹣③得:,
②﹣③得:,
∵,
∴,
解得:.
故选:A.
【点睛】
本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.
2、D
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
3、C
【分析】
先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可.
【详解】
解:,
①×2得,
③+②得,
把代入①得,
,
∵的解都是正数,
∴,
解得.
故选择C.
【点睛】
本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.
4、C
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
5、A
【分析】
根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.
【详解】
解:①根据二元一次方程定义可知是二元一次方程,此项正确;
②化简后为,不符合定义,此项错误;
③含有三个未知数不符合定义,此项错误;
④不符合定义,此项错误;
所以只有①是二元一次方程,
故选:A.
【点睛】
本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.
6、C
【分析】
根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.
【详解】
解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,
∴ ,
解得:.
故选:C
【点睛】
本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.
7、C
【分析】
根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.
【详解】
解:,
由①+②,得11x=33,
解得:x=3,
把x=3代入①,得9+2y=13,
解得:y=2,
所以方程组的解是,
故选:C.
【点睛】
本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.
8、D
【分析】
把代入ax-5y=1解方程即可求解.
【详解】
解:∵是关于x、y的二元一次方程ax-5y=1的解,
∴将代入ax-5y=1,
得:,解得:.
故选:D.
【点睛】
此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.
9、D
【分析】
根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.
【详解】
解:A、不是整式方程;故错误.
B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.
C、未知数y最高次数是2;故错误.
D、是二元一次方程,故正确.
故选:D.
【点睛】
本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.
10、B
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
二、填空题
1、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
2、
【解析】
【分析】
类比图1所示的算筹的表示方法解答即可.
【详解】
解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为
解得:
故答案为:
【点睛】
本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.
3、26
【解析】
【分析】
先代入求出2a+b=10,再变形,最后代入求出即可.
【详解】
解:∵是方程2x+y=10的解,
∴2a+b=10,
∴6a+3b−4
=3(2a+b)−4
=3×10−4
=26.
故答案为:26.
【点睛】
本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想.
4、 3 1
【解析】
【分析】
根据同解原理将方程组重新组合,解方程组求出,然后代入求解即可.
【详解】
解:∵方程组的解也是方程 的解,
重新组合,
①×7-②得:
,
x=2,
把x=2代入①得y=1
∴,
代入 ,得关于a、b的方程组,
解得
故答案为3;1.
【点睛】
本题考查方程组同解问题,掌握方程组同解可以重新调整方程组成新方程组是解题关键.
5、2
【解析】
【分析】
由题意根据同解方程解方程的方法联立方程可得,进而即可得出答案.
【详解】
解:因为与的解相同,且,
所以,可得,解得:.
故答案为:2.
【点睛】
本题考查同解方程解方程,解答本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.
三、解答题
1、(1);(2)
【分析】
(1)根据代入消元法计算即可;
(2)根据加减消元法计算即可;
【详解】
解:(1),
把①代入②中,得到,
解得:,
把代入①中,得:,
∴方程组的解集为;
(2),
得:,
解得:,
把代入②中,得:,
∴方程组的解为.
【点睛】
本题主要考查了二元一次方程组的求解,准确计算是解题的关键.
2、(1);(2).
【分析】
(1)应用加减消元法,求出方程组的解即可;
(2)先把方程组化简,再应用加减消元法,求出方程组的解即可.
【详解】
解:(1),
①×2得,6x+2y=30③,
②+③得,11x=44,
解得x=4,
把x=4代入①得,y=3,
所以方程组的解是;
(2),
整理得,
①×2得,4x+6y=20③,
③-②得,5y=15,
解得y=3,
把y=3代入①得,x=,
所以方程组的解是.
【点睛】
本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.
3、(1)(1,﹣1);(2)2,﹣1;(3)
【分析】
(1)当a=1且b=1时,分别求出x′和y′即可得出答案;
(2)根据条件列出方程组即可求出a,b的值;
(3)根据对任意数对(x,y)经过运算φ又得到数对(x,y),得到,根据2x-y=0,得到y=2x,代入方程组即可得到答案.
【详解】
解:(1)当a=1且b=1时,
x′=1×0+1×1=1,
y′=1×0﹣1×1=﹣1,
故答案为:(1,﹣1);
(2)根据题意得:
,
解得:,
故答案为:2,﹣1;
(3)∵对任意数对(x,y)经过运算φ又得到数对(x,y),
∴,
∵2x﹣y=0,
∴y=2x,
代入方程组解得:
,
∴,
解得.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
4、(1);(2).
【分析】
(1)利用代入消元法求解即可;
(2)先求出每个不等式的解集,然后求出不等式组的解集即可.
【详解】
解:(1)
由②得:③,
将③代入①得,解得
将代入③得:
∴方程组的解为:;
(2)解不等式组
由①得:,解得,
由②得:,解得,
∴不等式组的解集为:.
【点睛】
本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法.
5、(1),;(2) ,
【分析】
(1)根据方程组的解的定义,应满足方程②,x=2,y=1应满足方程①,将它们分别代入方程②①,就可得到关于a,b的二元一次方程组,解得a,b的值;
(2)将a,b代入原方程组,求解即可.
【详解】
解:(1)将代入②得,解得:
将x=2,y=1代入①得,解得: ,
∴,;
(2)方程组为:,
①+②得: ,
,
解得: ,
将代入①得: ,
,
解得: ,
∴方程组的解为 .
【点睛】
本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共18页。试卷主要包含了若是关于x,如果x等内容,欢迎下载使用。
这是一份2020-2021学年第五章 二元一次方程组综合与测试课后练习题,共19页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题,共19页。试卷主要包含了方程x+y=6的正整数解有等内容,欢迎下载使用。