初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题,共19页。试卷主要包含了下列方程是二元一次方程的是,小明在解关于x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A. B.
C. D.
2、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
3、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
4、下列方程中,①;②;③;④,是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
5、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).
A.11支 B.9支 C.7支 D.5支
6、下列各组数值是二元次方程2x﹣y=5的解是( )
A. B. C. D.
7、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
8、下列方程是二元一次方程的是( )
A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=1
9、小明在解关于x、y的二元一次方程组时得到了正确结果.后来发现、处被墨水污损了,请你帮他计算出、处的值分别是( ).
A.1、1 B.2、1 C.1、2 D.2、2
10、解方程组的最好方法是( )
A.由①得再代入② B.由②得再代入①
C.由①得再代入② D.由②得再代入①
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若与可以合并成一项,则m+n的值_____.
2、已知关于x,y的二元一次方程3mx-y=-1有一组解是,则m的值是 ___.
3、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较的大小关系_________.
4、已知实数x,y满足x+y=3,且x>﹣3,y≥1,则x﹣y的取值范围____.
5、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.
三、解答题(5小题,每小题10分,共计50分)
1、解下列方程组:
(1);
(2).
2、已知关于,的方程组,若该方程组的解,的值互为相反数,求的值和方程组的解.
3、定义数对(x,y)经过一种运算φ可以得到数对(x',y'),并把该运算记作φ(x,y)=(x',y'),其中(a,b为常数).例如,当a=1,且b=1时,φ(﹣2,3)=(1,﹣5).
(1)当a=1且b=1时,φ(0,1)= ;
(2)若φ(1,2)=(0,4),则a= ,b= ;
(3)如果组成数对(x,y)的两个数x,y满足二元一次方程2x﹣y=0,并且对任意数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.
4、一辆汽车从A地驶向B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为,在高速公路上行驶的速度为,汽车从A到B地一共行驶了.那么汽车在高速公路上行驶了多少千米?
5、解下列方程组:
(1)
(2)
---------参考答案-----------
一、单选题
1、A
【分析】
根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.
【详解】
解:设小长方形的长为x,宽为y,
由题意得: 或,
故选A.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.
2、A
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
3、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
4、A
【分析】
根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.
【详解】
解:①根据二元一次方程定义可知是二元一次方程,此项正确;
②化简后为,不符合定义,此项错误;
③含有三个未知数不符合定义,此项错误;
④不符合定义,此项错误;
所以只有①是二元一次方程,
故选:A.
【点睛】
本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.
5、D
【分析】
根据题意列出三元一次方程组消元,再求解即可.
【详解】
解:设购买甲、乙、丙三种钢笔分别为x、y、z支,由题意,得
①×4-②×5得,
所以,
将代入①,得.
即.
∵,
∴,
∴x为小于6的正整数,
四个选项中只有D符合题意;
故选D.
【点睛】
本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.
6、D
【分析】
将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.
【详解】
解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;
B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;
C. 把代入方程2x﹣y=5,2-3=-1≠5,不满足题意;
D. 把代入方程2x﹣y=5,6-1=5,满足题意;
故选:D.
【点睛】
本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.
7、A
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
8、C
【分析】
根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
【详解】
解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,
∴x﹣xy=1不是二元一次方程;
B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,
∴x2﹣y﹣2x=1不是二元一次方程;
C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,
∴3x﹣y=1是二元一次方程;
D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,
∴﹣2y=1不是二元一次方程.
故选:C.
【点睛】
此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
9、B
【分析】
将方程组的解代入方程求解即可.
【详解】
将代入,得,
解之得.
故选:B.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.
10、C
【分析】
观察两方程中系数关系,即可得到最好的解法.
【详解】
解:解方程组的最好方法是由①得,再代入②.
故选:C.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
二、填空题
1、2
【解析】
【分析】
先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)可得一个关于二元一次方程组,解方程组求出的值,再代入计算即可得.
【详解】
解:由题意得:与是同类项,
则,
解得,
所以,
故答案为:2.
【点睛】
本题考查了同类项、二元一次方程组的应用,熟记同类项的定义是解题关键.
2、-1
【解析】
【分析】
把x与y的值代入方程计算即可求出m的值.
【详解】
解:把代入方程3mx-y=-1中得:3m+2=-1,
解得:m=-1.
故答案为:-1.
【点睛】
本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
3、x2>x3>x1
【解析】
【分析】
先对图表数据进行分析处理得:,再结合数据进行简单的合情推理得:,所以得到x2>x3>x1.
【详解】
解:由图可知:,
即,
所以x2>x3>x1,
故答案为:x2>x3>x1.
【点睛】
本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.
4、
【解析】
【分析】
先设x﹣y=m,利用x+y=3,构造方程组,求出用m表示x、y的代数式,再根据x>﹣3,y≥1,列不等式求出m的范围即可.
【详解】
解:设x﹣y=m,
∴,
②+①得,
②-①得,
∵y≥1,
∴,
解得,
∵x>﹣3,
∴,
解得,
∴,
x﹣y的取值范围.
故答案为.
【点睛】
本题考查方程与不等式综合问题,解题关键是设出x﹣y=m,与x+y=3,构造方程组从中求出,,再出列不等式.
5、3
【解析】
【分析】
先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.
【详解】
解:∵x2a﹣3+yb+2=3是二元一次方程,
∴2a﹣3=1,b+2=1,
∴a=2,b=﹣1,
则a﹣b=2﹣(﹣1)=2+1=3.
故答案为:3.
【点睛】
本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.
三、解答题
1、(1);(2).
【分析】
利用加减法解二元一次方程组即可求解.
【详解】
解:(1)
①×3得 ,
②+③得 5x=15,
解得x=3,
把x=3代入①得 3+y=3,
解得y=0,
∴二元一次方程组的解是;
(2)
①×2得 10x-12y=18③,
②×3得 21x-12y=-15④,
④-③得 11x=-33,
解得 x=-3,
把x=-3代入①得 -15-6y=9,
解得y=-4,
∴二元一次方程组的解是.
【点睛】
本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.
2、,
【分析】
根据x、y互为相反数得出y=-x,代入方程组中的两个方程求解即可.
【详解】
解:因为,的值互为相反数,所以.
将代入中,得,
解得,所以,所以原方程组的解是,
将,代入中,得:.
【点睛】
本题考查相反数、解二元一次方程组,理解相反数的意义以及二元一次方程组的解,正确求出方程组的解是解答的关键.
3、(1)(1,﹣1);(2)2,﹣1;(3)
【分析】
(1)当a=1且b=1时,分别求出x′和y′即可得出答案;
(2)根据条件列出方程组即可求出a,b的值;
(3)根据对任意数对(x,y)经过运算φ又得到数对(x,y),得到,根据2x-y=0,得到y=2x,代入方程组即可得到答案.
【详解】
解:(1)当a=1且b=1时,
x′=1×0+1×1=1,
y′=1×0﹣1×1=﹣1,
故答案为:(1,﹣1);
(2)根据题意得:
,
解得:,
故答案为:2,﹣1;
(3)∵对任意数对(x,y)经过运算φ又得到数对(x,y),
∴,
∵2x﹣y=0,
∴y=2x,
代入方程组解得:
,
∴,
解得.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
4、120km
【分析】
根据题意,设出未知数,由等量关系:高速公路=2×普通公路,普通公路上的时间+高速公路的时间=总时间,列方程组求解即可.
【详解】
解:设普通公路长为x(km),高速公路长为y(km).
根据题意,得,
将代入得:
,解得:,
∴,
∴方程组的解为,
答:汽车在高速公路上行驶了120km.
【点睛】
此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.
5、(1);(2)
【分析】
(1)用加减消元法解二元一次方程组即可;
(2)先化简方程组,再用加减消元解方程组即可.
【详解】
解:(1),
②-①得:,
解得,
把代入①得:,
解得:,
∴方程组的解为;
(2),
由②可得y=2-x,
把y=2-x代入①,可得x=-1,
把x=-1代入y=2-x,可得y=3,
∴方程组的解为.
【点睛】
本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.
相关试卷
这是一份初中数学第五章 二元一次方程组综合与测试同步达标检测题,共19页。试卷主要包含了若是关于x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习,共18页。试卷主要包含了已知方程组中,x,如图,9个大小,二元一次方程的解可以是等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试巩固练习,共22页。试卷主要包含了若方程组的解为,则方程组的解为,如图,9个大小,已知是二元一次方程,则的值为等内容,欢迎下载使用。