初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习,共20页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )A.1 B.﹣1 C.2 D.﹣22、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.73、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )A.k B.k C.k D.k4、在某场CBA比赛中,某位运动员的技术统计如下表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)防攻(次)个人总得分(分)数据38271163433注:①表中出手投篮次数和投中次数均不包括罚球;②总得分=两分球得分+三分球得分+罚球得分.根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.A.5,6 B.6,5 C.4,7 D.7,45、解方程组的最好方法是( )A.由①得再代入② B.由②得再代入①C.由①得再代入② D.由②得再代入①6、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x7、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=08、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )A.330千米 B.170千米 C.160千米 D.150千米9、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想10、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).A., B.2,1 C.-2,1 D.-1,0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知方程组的解也是方程的解,则______,______.2、关于a、b、x、y的多项式2021am+6bn﹣3xmyn+a3mb2n﹣3﹣4xn﹣1y2m﹣4(其中m、n为正整数)中,恰有两项是同类项,则mn=___.3、某学校八年级举行了二元一次方程组速算比赛,并按学生的得分高低对前100名进行表彰奖励,原计划一等奖表彰10人,二等奖表彰30人,三等奖表彰60人,经协商后调整为一等奖表彰20人,二等奖表彰40人,三等奖表彰40人,调整后一等奖平均分降低4.5分,二等奖平均分降低2.5分,三等奖平均分降低0.5分,若调整前一等奖平均分比二等奖平均分高0.8分,则调整后二等奖平均分比三等奖平均分高_________分.4、已知下列方程,其中是二元一次方程的有________.(1)2x-5=y; (2)x-1=4; (3)xy=3; (4)x+y=6; (5)2x-4y=7;(6);(7);(8);(9);(10).5、如图,三个全等的小矩形沿“横一竖一横“排列在一个大的边长分别为12.34,23.45的矩形中,则图中一个小矩形的周长等于_________.三、解答题(5小题,每小题10分,共计50分)1、运输公司要把120吨物资从A地运往B地,有甲,乙,丙三种车型供选择,每种型号的车辆的运载量和运费如下表所示.(假设每辆车均满载)车型甲乙丙运载量(吨/辆)5810运费(元/辆)450600700解答下列问题:(1)安排甲型车8辆,乙型车5辆,丙型车___________辆可将全部物资一次运完;(2)若全部物资仅用甲、乙型车一次运完,需运费9600元,则甲、乙型车各需多少辆?(3)若用甲、乙,丙型车共14辆同时参与运送,且一次运完全部物资,则三种型号的车各需多少辆?此时总运费为多少元?2、甲、乙两同学同时解方程组,甲看错了方程①中的m,得到的方程组的解为,乙看错了方程②中的,得到的方程组的解为,求原方程组的正确解.3、为了响应“阳光运动一小时”校园体育活动,我校计划再购买一批篮球,已知购买2个品牌的篮球和3个品牌的篮球共需380元;购买4个品牌的篮球和2个品牌的篮球共需360元.(1)求、两种品牌的篮球的单价.(2)我校打算网购20个品牌的篮球和3个品牌的篮球,“双十一”期间,京东购物打折促销,其中品牌打八折,品牌打九折,问:学校购买打折后的篮球所花的费用比打折前节省了多少钱?4、某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住10人,小宿舍每间可住8人,该校420名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.5、代数式,当x=-2时,代数式的值为4;当x=2时,代数式的值为10,则x=-1时,求代数式的值. ---------参考答案-----------一、单选题1、C【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立,②-①,得-3y=3,∴y=-1,把y=-1代入①,得x-1=3∴x=4,∴,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.2、B【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.3、A【分析】根据得出,,然后代入中即可求解.【详解】解:,①+②得,∴③,①﹣③得:,②﹣③得:,∵,∴,解得:.故选:A.【点睛】本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.4、B【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:,解得:.答:设本场比赛中该运动员投中两分球6个,三分球5个.故选:B.【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.5、C【分析】观察两方程中系数关系,即可得到最好的解法.【详解】解:解方程组的最好方法是由①得,再代入②.故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6、B【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.7、B【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.8、C【分析】设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.【详解】解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,依题意得: ,解得: , ,故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.10、A【分析】将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可【详解】将时,代入,得 ①,再由k比b大1得 ②,①②联立,解得,.故选:A.【点睛】此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.二、填空题1、 3 1【解析】【分析】联立不含a与b的方程组成方程组求出x与y的值,代入剩下的方程求出a与b的值即可.【详解】解:联立得:,解得:,代入剩下的两方程得:,解得:,故答案为:3,1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2、或##或【解析】【分析】分两种情况讨论:当是同类项时,当是同类项时,再根据同类项的定义列方程组,解方程组可得答案.【详解】解:当是同类项时,可得: 经检验:符合题意; 当是同类项时,则 解得: 经检验,符合题意; 故答案为:或【点睛】本题考查的是同类项的概念,二元一次方程组的解法,掌握“含有相同字母,相同字母的指数也相同的单项式是同类项”是解题的关键.3、8.9【解析】【分析】先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变列出方程,再根据调整前一等奖平均分比二等奖平均分高0.8分列出方程,由此可求得调整后二等奖平均分比三等奖平均分高多少即可.【详解】解:设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,∵总分不变,∴10x+30y+60z=20(x﹣4.5)+40(y﹣2.5)+40(z﹣0.5),整理可得:x+y﹣2z=21①,∵调整前一等奖平均分比二等奖平均分高0.8分,∴x﹣y=0.8②,由②得:x=y+0.8③,将③代入①得:y+0.8+y﹣2z=21,∴2y﹣2z=21.8,∴y﹣z=10.9,∴(y﹣2.5)﹣(z﹣0.5)=y﹣2.5﹣z+0.5=y﹣z﹣2=10.9﹣2=8.9,故答案为:8.9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找出之间的数量关系,列出方程,再利用消元思想求解.4、(1)(4)(5)(8)(10)【解析】【分析】根据二元一次方程的定义逐一进行分析判断即可.【详解】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x的次数为2【点睛】本题考查了二元一次方程的概念.解题的关键是熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.5、23.86【解析】【分析】设小矩形的长为x,宽为y,根据图形列出二元一次方程组,根据小矩形的周长为结合方程组直接可得.【详解】设小矩形的长为x,宽为y,由题意得:,①+②得,,则一个小矩形的周长为:.故答案为:【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.三、解答题1、(1)4;(2)需要甲型车8辆,乙型车10辆;(3)需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.【分析】(1)根据三种车型的运载量列出式子,计算乘除法与减法即可得;(2)设需要甲型车辆,乙型车辆,根据“120吨物资”和“运费9600元”建立方程组,解方程组即可得;(3)设需要甲型车辆,乙型车辆,从而可得需要丙型车辆,再根据“一次运完全部物资”建立关于的等式,结合为正整数进行分析即可得.【详解】解:(1),,,(辆),即安排甲型车8辆,乙型车5辆,丙型车4辆可将全部物资-次运完,故答案为:4;(2)设需要甲型车辆,乙型车辆,由题意得:,解得,符合题意,答:需要甲型车8辆,乙型车10辆;(3)设需要甲型车辆,乙型车辆,则需要丙型车辆,由题意得:,整理得:,则,均为正整数,只能等于5,,,此时总运费为(元),答:需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元.【点睛】本题考查了二元一次方程组的应用等知识点,正确建立方程组是解题关键.2、【分析】把代入方程组第二个方程求出n的值,把代入第一个方程求出m的值,确定出原方程组,再求解即可.【详解】解:把代②得:-12+n=-5,即n=7;把代入①得:4m-4=12,即m=4,故方程组为,③×3-②×2得:-23y=46,即y=-2,把y=-2代入③得:x=.则方程组的解为.【点睛】本题考查的是二元一次方程的解,解答此题关键是将每一个解代入没有看错的方程中,分别求m、n的值,再解方程组即可.3、(1)A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;(2)学校购买打折后的篮球所花的费用比打折前节省了190元.【分析】(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,根据“购买2个A品牌的篮球和3个B品牌的篮球共需380元;购买4个A品牌的篮球和2个B品牌的篮球共需360元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,列式计算,即可求出结论.【详解】解:(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,根据题意得:,解得:.答:A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;(2)20×40×(1-0.8)+3×100×(1-0.9)=190(元).答:学校购买打折后的篮球所花的费用比打折前节省了190元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据总价=单价×数量,列式计算.4、大宿舍有10间,小宿舍有40间【分析】设学校大的宿舍有间,小的宿舍有间.根据宿舍50间;大的宿舍每间可住10人,小的每间可住8人,该校420个住宿生恰好住满这50间宿舍.这两个等量关系列方程求解.【详解】解:设学校大的宿舍有间,小的宿舍有间.依题意有,解得,答:学校大的宿舍有10间,小的宿舍有40间.【点睛】本题考查了二元一次方程组的应用,解题的关键是根据题意列出方程组进行求解.5、【分析】先根据代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,得到,解方程求出,由此求解即可.【详解】解:∵代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,∴解得,,∴ 代数式为即为,当x=-1代入,得.【点睛】本题主要考查了代数式求值和解二元一次方程组,解题的关键在于能够根据题意建立关于a、b的二元一次方程组求出a、b的值.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了设m为整数,若方程组的解x,二元一次方程的解可以是,方程组的解是,已知是方程的解,则k的值为等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试测试题,共20页。试卷主要包含了二元一次方程组的解是,若是关于x等内容,欢迎下载使用。