初中北京课改版第五章 二元一次方程组综合与测试课后测评
展开这是一份初中北京课改版第五章 二元一次方程组综合与测试课后测评,共18页。试卷主要包含了已知方程组的解满足,则的值为,如图,9个大小等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A. B.
C. D.
2、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
3、如果与是同类项,那么的值是( )
A. B. C. D.
4、用代入法解方程组,以下各式正确的是( )
A. B.
C. D.
5、已知是方程5x−ay=15的一个解,则a的值为( )
A.5 B.−5 C.10 D.−10
6、已知方程,,有公共解,则的值为( ).
A.3 B.4 C.0 D.-1
7、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
8、已知方程组的解满足,则的值为( )
A.7 B. C.1 D.
9、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A. B.
C. D.
10、下列方程组中,是二元一次方程组的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的和为 _____.
2、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较的大小关系_________.
3、已知是二元一次方程组的解,则mn的相反数为______.
4、若x,y满足, 则式子x2﹣9y2的值为 ___.
5、二元一次方程组的解为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、(1)解方程组;
(2)解不等式组.
2、解方程组:
3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.
(1)求购买一副跳棋和一副军棋各需要多少钱?
(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?
4、某商店欲购进A、B两种商品,已知购进A种商品3件和B种商品4件共需220元;若购进A种商品5件和B种商品2件共需250元.
(1)求A、B两种商品每件的进价分别是多少元?
(2)若每件A种商品售价48元,每件B种商品售价31元,且商店将购进A、B两种商品共50件全部售出后,要获得的利润不少于360元,问A种商品至少购进多少件?
5、解下列方程组:
(1)
(2)
---------参考答案-----------
一、单选题
1、B
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
2、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
3、A
【分析】
利用同类项定义列出方程组,求出方程组的解即可得到a与b的值.
【详解】
解:∵xa+2y3与﹣3x3y2b﹣a是同类项,
∴,
解得:
所以.
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
4、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
5、A
【分析】
把与的值代入方程计算即可求出的值.
【详解】
解:把代入方程,
得,
解得.
故选:.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
6、B
【分析】
联立,,可得:,,将其代入,得值.
【详解】
,解得,
把代入中得:,
解得:.
故选:B.
【点睛】
本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.
7、D
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
8、D
【分析】
①+②得出x+y的值,代入x+y=1中即可求出k的值.
【详解】
解:
①+②得:3x+3y=4+k,
∴,
∵,
∴,
∴,
解得:,
故选:D
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
9、A
【分析】
根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.
【详解】
解:设小长方形的长为x,宽为y,
由题意得: 或,
故选A.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.
10、C
【分析】
根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.
【详解】
解:A. 第二个方程中的是二次的,故本选项错误;
B.方程组中含有3个未知数,故本选项错误;
C. 符合二元一次方程组的定义,故本选项正确;
D. 第二个方程中的xy是二次的,故本选项错误.
故选C.
【点睛】
:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.
二、填空题
1、
【解析】
【分析】
解二元一次方程组,根据x>y列出不等式,即可求得,解不等式组,根据不等式组无解求得,进而根据题意求得符合条件的整数,求和即可
【详解】
解:
①+②得
解得,
将代入②得:
解得
解得
由
解不等式③得:
解不等式④得:
不等式组无解
解得
则所有符合条件的整数a为:,其和为
故答案为:7
【点睛】
本题考查了解二元一次方程组,解一元一次不等式组,求不等式组的整数解,根据题意求得符合题意的整数是解题的关键.
2、x2>x3>x1
【解析】
【分析】
先对图表数据进行分析处理得:,再结合数据进行简单的合情推理得:,所以得到x2>x3>x1.
【详解】
解:由图可知:,
即,
所以x2>x3>x1,
故答案为:x2>x3>x1.
【点睛】
本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.
3、-12
【解析】
【分析】
把代入方程组求出m,n即可;
【详解】
把代入中得:,
得:,
解得:,
把代入①中得:,
∴方程组的解是,
∴,
∴mn的相反数是;
故答案是:.
【点睛】
本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.
4、-6
【解析】
【分析】
利用加减消元法消去y,求出x的值,然后利用代入法求出y得到方程组的解,代入x2﹣9y2求解即可.
【详解】
解:,由①+②得:2x=1,x=,把x=代入①得:y=,
∴x2﹣9y2=,
故答案为:-6.
【点睛】
本题考查了解二元一次方程组以及应用,掌握解方程组的方法和步骤是解题的关键.
5、
【解析】
【分析】
利用加减消元法解二元一次方程组即可得到答案.
【详解】
解:,
用①+②得:,解得,
把代入①中得:,解得,
∴方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.
三、解答题
1、(1);(2)
【分析】
(1)对方程组进行化简,然后利用加减消元法求解即可;
(2)分别求得每个不等式的解集,然后取共同的部分即可.
【详解】
解:(1)方程组,可化简为
①+②式得,,解得
将代入①式得:,解得
故方程组的解为
(2)不等式组,
解不等式,可得:
解不等式,可得:
所以不等式组的解集为
【点睛】
此题考查了二元一次方程组和一元一次不等式组的求解,解题的关键是熟练掌握方程组和不等式组的求解方法.
2、.
【分析】
根据解二元一次方程组的方法,得到③,得到④,消元得解,然后代入①求解即可.
【详解】
解:,
得:,
得:,
得:,
解得:,
将代入①得:,
∴方程组的解为:.
【点睛】
题目主要考查二元一次方程组的解法,熟练掌握加减消元法是解题关键.
3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋
【分析】
(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;
(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.
【详解】
解:(1)设购买一副跳棋和一副军棋各需要x元、y元,
由题意得:,
解得,
∴购买一副跳棋和一副军棋各需要6元、10元,
答:购买一副跳棋和一副军棋各需要6元、10元;
(2)设购买m副军棋,则购买副跳棋,
由题意得:,即,
解得,
∴学校最多可以买30副军棋,
答:学校最多可以买30副军棋.
【点睛】
本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.
4、(1)A种商品每件的进价为40元,B种商品每件的进价为25元;(2)A种商品至少购进30件.
【分析】
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题中的等量关系列出二元一次方程组求解即可;
(2)设购进A种商品m件,则购进B种商品(50-m)件,根据题意列出一元一次不等式求解即可.
【详解】
解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,
依题意,得:,解得:.
答:A种商品每件的进价为40元,B种商品每件的进价为25元.
(2)设购进A种商品m件,则购进B种商品(50-m)件,
依题意,得:(48-40)m+(31-25)(50-m)≥360,解得:m≥30.
答:A种商品至少购进30件.
【点睛】
此题考查了二元一次方程组应用题和一元一次不等式应用题,解题的关键是正确分析题目中的等量关系列出方程或不等式求解.
5、(1);(2)
【分析】
(1)用加减消元法解二元一次方程组即可;
(2)先化简方程组,再用加减消元解方程组即可.
【详解】
解:(1),
②-①得:,
解得,
把代入①得:,
解得:,
∴方程组的解为;
(2),
由②可得y=2-x,
把y=2-x代入①,可得x=-1,
把x=-1代入y=2-x,可得y=3,
∴方程组的解为.
【点睛】
本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业,共21页。试卷主要包含了二元一次方程组的解是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题,共21页。试卷主要包含了设m为整数,若方程组的解x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共20页。试卷主要包含了已知关于x,已知二元一次方程组则等内容,欢迎下载使用。