![最新京改版七年级数学下册第五章二元一次方程组专项练习练习题(名师精选)第1页](http://www.enxinlong.com/img-preview/2/3/12700180/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![最新京改版七年级数学下册第五章二元一次方程组专项练习练习题(名师精选)第2页](http://www.enxinlong.com/img-preview/2/3/12700180/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![最新京改版七年级数学下册第五章二元一次方程组专项练习练习题(名师精选)第3页](http://www.enxinlong.com/img-preview/2/3/12700180/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共20页。试卷主要包含了下列是二元一次方程的是,方程x+y=6的正整数解有等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
2、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
3、已知方程组的解满足,则的值为( )
A.7 B. C.1 D.
4、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )
A.6或 B.2或6 C.2或 D.2或
5、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )
A.2 B.3 C.4 D.5
6、下列是二元一次方程的是( )
A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy
7、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).
A. B. C. D.
8、方程x+y=6的正整数解有( )
A.5个 B.6个 C.7个 D.无数个
9、下列方程中,①;②;③;④,是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
10、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若是一个三元一次方程,那么_______, ________.
2、如果与的和是单项式, 则________ .
3、方程组的解为:__________.
4、若|x﹣y|+(y+1)2=0,则x+y=_____.
5、方程组的解是 ______.
三、解答题(5小题,每小题10分,共计50分)
1、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;
(1)求甲、乙两种商品每件的进价分别为多少元;
(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?
2、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.
(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值.
3、解二元一次方程组:
4、如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
5、已知方程组的解满足x为非正数,y为负数.
(1)求m的取值范围;
(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.
---------参考答案-----------
一、单选题
1、A
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
2、B
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
3、D
【分析】
①+②得出x+y的值,代入x+y=1中即可求出k的值.
【详解】
解:
①+②得:3x+3y=4+k,
∴,
∵,
∴,
∴,
解得:,
故选:D
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
4、A
【分析】
设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.
【详解】
解:∵ABCD是长方形,
∴∠A=∠B=90°,
∵点E为AD的中点,AD=8cm,
∴AE=4cm,
设点Q的运动速度为x cm/s,
①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,
,
解得,,
即点Q的运动速度cm/s时能使两三角形全等.
②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,
,
解得:,
即点Q的运动速度6cm/s时能使两三角形全等.
综上所述,点Q的运动速度或6cm/s时能使两三角形全等.
故选:A.
【点睛】
本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.
5、B
【分析】
设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.
【详解】
解:设可以购进笔记本x本,中性笔y支,
依题意得: ,
∴ ,
∵x,y均为正整数,
∴ 或 或 ,
∴共有3种购买方案,
故选:B.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
6、B
【分析】
根据二元一次方程的定义逐项判断即可得.
【详解】
A、是一元一次方程,此项不符合题意;
B、是二元一次方程,此项符合题意;
C、是分式方程,此项不符合题意;
D、是二元二次方程,此项不符合题意;
故选:B.
【点睛】
本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.
7、A
【分析】
此题中的等量关系有:, ,根据等量关系列出方程即可.
【详解】
设∠ABD和∠DBC的度数分别为x°,y°,则有
整理得:,
故选:A.
【点睛】
本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
8、A
【分析】
根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可
【详解】
解:方程的正整数解有,,,,共5个,
故选:A.
【点睛】
本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.
9、A
【分析】
根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.
【详解】
解:①根据二元一次方程定义可知是二元一次方程,此项正确;
②化简后为,不符合定义,此项错误;
③含有三个未知数不符合定义,此项错误;
④不符合定义,此项错误;
所以只有①是二元一次方程,
故选:A.
【点睛】
本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.
10、B
【分析】
设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可
【详解】
解:设馒头每个元,包子每个元,根据题意得
故选B
【点睛】
本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.
二、填空题
1、 -1 0
【解析】
【分析】
根据三元一次方程的定义:含有三个未知数,未知数的次数都是1的方程,由此可得,解出即可得出答案.
【详解】
由题意得:,
解得:.
故答案为:-1,0.
【点睛】
本题考查了三元一次方程,解题关键是掌握三元一次方程的定义.
2、5
【解析】
【分析】
两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.
【详解】
解:∵与的和是单项式,
∴与是同类项,
∴,
解得:.
∴.
3、
【解析】
【分析】
先把原方程组中的两个方程相减,得方程③,再运用加减法解方程组即可.
【详解】
解:
①-②,得
2x-2y=2,即x-y=1③.
③×2009,得
2009x-2009y=2009④
①-④,得
x=-1.
把x=-1代入③得
y=-2.
∴原方程组的解是.
故答案为.
【点睛】
本题主要考查了二元一次方程组的求解,灵活运用加减法解方程组是求方程组解的关键.
4、﹣2
【解析】
【分析】
根据绝对值的非负性列出方程组求出x、y的值,代入所求代数式计算即可.
【详解】
解:∵|x﹣y|+(y+1)2=0,
∴,
解得:,
∴x+y=﹣2.
故答案为:﹣2.
【点睛】
本题主要考查了绝对值的非负性,解二元一次方程组,利用绝对值的非负性列出方程组是解题的关键.
5、##
【解析】
【分析】
根据二元一次方程组的解法步骤,分步计算即可得到正确答案.
【详解】
解:,
①+②得:2x=10,
∴x=5.
把x=5代入①得:5+2y=7,
解得:y=1.
∴原方程组的解为:.
故答案为:.
【点睛】
本题考查的是二元一次方程组的解法,牢记加减消元法或代入消元法的解法步骤是解题关键.
三、解答题
1、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件
【分析】
(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;
(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.
【详解】
(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的
解得
故甲种商品每件进价为100,乙种商品每件进价300元
(2)设该超市购进甲种商品m件,根据题意得:
(150-100)m+(400-300)(80-m)≥6500
解得m≤30
∵m为整数
∴m的最大整数值为30.
即该超市最多购进甲种商品30件.
【点睛】
本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.
2、(1)a=0;(x+1)(x2x+1);(2)31;
【分析】
(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;
(2)设3x4+ax3+bx34=(x+1)(x2)•M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于a、b的方程组,即可得到答案.
【详解】
解:(1)∵x+1是多项式x3+ax+1的因式,
∴当x=1时,x3+ax+1=0,
∴1a+1=0,
∴a=0,
令x3+1=(x+1)(x2+bx+c),
而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,
∵等式两边x同次幂的系数相等,
即x3+(b+1)x2+(c+b)x+c=x3+1,
∴,
解得:,
∴a的值为0,x3+1=(x+1)(x2x+1);
(2)设3x4+ax3+bx34=(x+1)(x2)•M(其中M为二次整式),
∴x=1,x=2是方程3x4+ax3+bx34=0的解,
∴
∴,
∴a+b=8+(39)=31;
【点睛】
本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.
3、
【分析】
根据加减消元法计算即可.
【详解】
解:
①2得4x+6y=60③
②3得9x+6y=75④
④③得5x=15
x=3
将x=3代入①中
6+3y=30
y=8
∴原方程组的解为
【点睛】
本题主要考查解二元一次方程组,熟练掌握二元一次方程组的解法是解决本题的关键.
4、动点M每秒运动5个单位长度,动点N每秒运动2个单位长度
【分析】
设动点M、N运动的速度分别是每秒x、y个单位长度,根据“若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.”列出方程组,解出即可.
【详解】
解:设动点M、N运动的速度分别是每秒x、y个单位长度,
∵点A、B表示的数分别是-20、64,
∴线段AB长为,
∴由题意有,
解得
∴动点M每秒运动5个单位长度,动点N每秒运动2个单位长度.
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
5、(1)﹣2<m≤3;(2)﹣1
【分析】
(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x≤0,y<0,列出不等式求解即可;
(2)先把原不等式移项得到(2m+1)x<2m+1.根据不等式(2m+1)x﹣2m<1的解为x>1,可得2m+1<0,由此结合(1)所求进行求解即可.
【详解】
解:(1)解方程组
用①+②得:,解得③,
把③代入②中得:,解得,
∴方程组的解为:.
∵x为非正数,y为负数,即x≤0,y<0,
∴.
解得﹣2<m≤3;
(2)(2m+1)x﹣2m<1
移项得:(2m+1)x<2m+1.
∵不等式(2m+1)x﹣2m<1的解为x>1,
∴2m+1<0,
解得m.
又∵﹣2<m≤3,
∴m的取值范围是﹣2<m.
又∵m是整数,
∴m的值为﹣1.
【点睛】
本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共19页。
这是一份2021学年第五章 二元一次方程组综合与测试练习题,共23页。试卷主要包含了设m为整数,若方程组的解x,下列方程中,①x+y=6;②x,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
这是一份数学第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了解方程组的最好方法是,二元一次方程的解可以是,如图,9个大小,二元一次方程组的解是等内容,欢迎下载使用。