初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试随堂练习题
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试随堂练习题,共20页。试卷主要包含了若方程组的解为,则方程组的解为,下列是二元一次方程的是,若是关于x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知是方程x﹣my=3的解,那么m的值为( )
A.2 B.﹣2 C.4 D.﹣4
2、在某场CBA比赛中,某位运动员的技术统计如下表所示:
技术 | 上场时间(分钟) | 出手投篮(次) | 投中(次) | 罚球得分(分) | 篮板(个) | 防攻(次) | 个人总得分(分) |
数据 | 38 | 27 | 11 | 6 | 3 | 4 | 33 |
注:①表中出手投篮次数和投中次数均不包括罚球;
②总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.
A.5,6 B.6,5 C.4,7 D.7,4
3、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
4、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为( )
A. B.
C. D.
5、已知 是方程的一个解, 那么的值是( ).
A.1 B.3 C.-3 D.-1
6、若方程组的解为,则方程组的解为( )
A. B.
C. D.
7、下列是二元一次方程的是( )
A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy
8、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )
A.6 B.8 C.10 D.12
9、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )
A.-5 B.-1 C.9 D.11
10、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( )
﹣3 | y |
|
| 1 |
|
4 |
| x |
A.15 B.17 C.19 D.21
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、方程组有正整数解,则正整数a的值为________.
2、已知二元一次方程组,则x+y=______.
3、已知实数x,y满足x+y=3,且x>﹣3,y≥1,则x﹣y的取值范围____.
4、二元一次方程组的解为 _____.
5、弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”则哥哥的年龄是___________岁.
三、解答题(5小题,每小题10分,共计50分)
1、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为;51的正因数有1、3、17、51,它的真因数之和为,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为,而,所以8的亲和数为,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.
(1)10的真因数之和为_______;
(2)求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;
(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.
2、5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁.那么现在这对母女的年龄分别是多少?
3、解下列方程或方程组:
(1)4x﹣2=2x+3.
(2)=2.
(3).
4、为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.
(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.
(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?
5、解方程(组)
(1)10+2(x﹣)=7(x﹣2);
(2);
(3).
---------参考答案-----------
一、单选题
1、A
【分析】
直接将代入x﹣my=3中即可得出答案.
【详解】
解:∵是方程x﹣my=3的解,
∴,
解得:,
故选:A.
【点睛】
本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.
2、B
【分析】
设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
解:设本场比赛中该运动员投中两分球x个,三分球y个,
根据题意得:,
解得:.
答:设本场比赛中该运动员投中两分球6个,三分球5个.
故选:B.
【点睛】
本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.
3、A
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
4、D
【分析】
若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.
【详解】
解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:
,
故选D.
【点睛】
此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.
5、A
【分析】
把x=1,y=-1代入方程2x-ay=3中,解关于a的方程,即可求出a的值.
【详解】
解:把x=1,y=-1代入方程2x-ay=3中,得:
2×1-a×(-1)=3,
2+a=3,
a=1.
故选:A.
【点睛】
本题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.
6、B
【分析】
由整体思想可得,求出x、y即可.
【详解】
解:∵方程组的解为,
∴方程组的解,
∴;
故选:B.
【点睛】
本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.
7、B
【分析】
根据二元一次方程的定义逐项判断即可得.
【详解】
A、是一元一次方程,此项不符合题意;
B、是二元一次方程,此项符合题意;
C、是分式方程,此项不符合题意;
D、是二元二次方程,此项不符合题意;
故选:B.
【点睛】
本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.
8、D
【分析】
设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.
【详解】
解:设甲组人数为人,乙组人数为人,
由题意得:,
将①代入②得:,
解得,
即原来乙组的人数为12人,
故选:D.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
9、D
【分析】
把代入ax-5y=1解方程即可求解.
【详解】
解:∵是关于x、y的二元一次方程ax-5y=1的解,
∴将代入ax-5y=1,
得:,解得:.
故选:D.
【点睛】
此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.
10、D
【分析】
根据题意列出两条等式,求出x,y的值即可.
【详解】
根据题意可得:
,
解得,
x+2y=5+2×8=5+16=21,
故答案为:D.
【点睛】
本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.
二、填空题
1、2
【解析】
【分析】
先消去 求解再由为正整数,分类求解 结合为正整数求解 再检验此时的是否满足也为正整数,从而可得答案.
【详解】
解:
②得:
①-③得:
当时,方程无解,
当时,方程的解为:
为正整数,
或或或
解得:或或或
为正整数,
当为正整数,由②得:也为正整数,
所以
故答案为:2
【点睛】
本题考查的是二元一次方程的正整数解,掌握“解二元一次方程组的方法及分类讨论”是解本题的关键.
2、3
【解析】
【分析】
用加减消元法解二元一次方程组即可.
【详解】
解:∵,
①+②,得4x+4y=12,
∴x+y=3,
故答案为:3.
【点睛】
本题考查二元一次方程组的解,熟练掌握加减消元法解二元一次方程组是解题的关键.
3、
【解析】
【分析】
先设x﹣y=m,利用x+y=3,构造方程组,求出用m表示x、y的代数式,再根据x>﹣3,y≥1,列不等式求出m的范围即可.
【详解】
解:设x﹣y=m,
∴,
②+①得,
②-①得,
∵y≥1,
∴,
解得,
∵x>﹣3,
∴,
解得,
∴,
x﹣y的取值范围.
故答案为.
【点睛】
本题考查方程与不等式综合问题,解题关键是设出x﹣y=m,与x+y=3,构造方程组从中求出,,再出列不等式.
4、
【解析】
【分析】
利用加减消元法解二元一次方程组即可得到答案.
【详解】
解:,
用①+②得:,解得,
把代入①中得:,解得,
∴方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.
5、15
【解析】
【分析】
设此时弟弟岁,哥哥岁,根据题意,因为弟弟与哥哥的年龄差等于哥哥与20岁的年龄差,哥哥与弟弟的年龄差等于弟弟与5岁的年龄差,列出二元一次方程组求解即可.
【详解】
设此时弟弟岁,哥哥岁,
由题意:,
解得:,
∴此时哥哥的年龄是15岁,
故答案为:15.
【点睛】
本题考查二元一次方程组的实际应用,理解题意,准确建立二元一次方程组并求解是解题关键.
三、解答题
1、(1)8;(2)见解析;(3)10461,11451,12441.
【分析】
(1)先求出10的真因数,再求10的真因数之和即可;
(2)先把给出的数用代数式表示,,根据要求列代数式得=,说明括号中的数为整式即可;
(3)设五位“两头蛇数”为(),先求出16的真因数之和15,找到16的亲和数为 ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为,可得能被33整除,根据,且,得出能被33整除得出即可.
【详解】
.解:(1)10的真因数为1,2,5,
10的真因数之和为1+2+5=8,
故答案为8;
(2),,
∵,
=,
=,
又因为,的整数,
∴为整数,
一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;
(3)设五位“两头蛇数”为(),
∵末位数为1,
∴不能被2(真因数)整除,
∵16的真因数之和,
∴16的亲和数为 ,
能被33整除,
能被33整除,
又2不能被33整除,
能被33整除,
,且,
∴,
或.
或(舍去),
,
,
∴或或,
所以五位“两头蛇数”为10461,11451,12441.
【点睛】
本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.
2、母亲现在年龄35岁,女儿现在7岁
【分析】
设母亲现在年龄x岁,女儿现在y岁,然后根据5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁,列出方程组求解即可.
【详解】
解:设母亲现在年龄x岁,女儿现在y岁,则
解得
答:母亲现在年龄35岁,女儿现在7岁.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键在于正确理解题意列出方程求解.
3、(1)x=;(2)x=﹣4;(3)
【分析】
(1)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;
(2)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;
(3)用加减消元法求解即可.
【详解】
解:(1)4x﹣2=2x+3,
移项,得4x﹣2x=3+2,
合并同类项,得2x=5,
系数化为1,得x=;
(2)=2,
去分母,得4(x+1)﹣9x=24,
去括号,得4x+4﹣9x=24,
移项,得4x﹣9x=24﹣4,
合并同类项,得﹣5x=20,
系数化为1,得x=﹣4;
(3),
②﹣①×3,得x=﹣1,
把x=﹣1代入①,得﹣1﹣y=2,
解得y=﹣3,
故方程组的解为.
【点睛】
本题考查了一元一次方程的解法,以及二元一次方程组的解法,熟练掌握求解步骤是解答本题的关键.解二元一次方程组的基本思路是消元,消元的方法有:加减消元法和代入消元法两种.
4、(1)第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)小军家4月份的电费为94.4元,5月份的电费为138.2元.
【分析】
(1)设第一档的电价为x元/度,第二档的电价为y元/度,根据2月分的电费及3月份的电费可列出关于x与y的方程组,解方程组即可;
(2)按照阶梯电价的计算方法计算,4月份按第一档计算电费,5月份按第二档计算电费即可.
【详解】
(1)设第一档的电价为x元/度,第二档的电价为y元/度,
依题意,得:,
解得:.
即第一档电价为0.59元/度,第二档的电价为0.64元/度.
(2)0.59×160=94.4(元),
0.59×180+0.64×(230﹣180)=138.2(元).
所以小军家4月份的电费为94.4元,5月份的电费为138.2元.
【点睛】
本题考查了二元一次方程组解决分段问题的应用,关键是理解题意,找到等量关系并正确列出方程组.
5、(1)x=;(2)x=﹣4;(3).
【分析】
(1)方程去括号、移项、合并同类项、系数化为1即可;
(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;
(3)利用加减消元法解答即可.
【详解】
解:(1)10+2(x﹣)=7(x﹣2),
去括号、得10+2x﹣1=7x﹣14,
移项、得2x﹣7x=1﹣10﹣14,
合并同类项、得﹣5x=﹣23,
系数化为1,得x=;
(2)﹣,
整理、得,
去分母、得17+20x﹣15x=﹣3,
移项、得20x﹣15x=﹣3﹣17,
合并同类项、得5x=﹣20,
系数化为1,得x=﹣4;
(3)方程组整理,得,
①+②,得6y=6,
解得y=1,
把y=1代入②,得x﹣2=1,
解得x=3,
故方程组的解为.
【点睛】
此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.
相关试卷
这是一份七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了若是关于x,下列方程是二元一次方程的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试当堂检测题,共19页。试卷主要包含了若是方程组的解,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练,共19页。试卷主要包含了若方程组的解为,则方程组的解为,已知二元一次方程组则等内容,欢迎下载使用。