数学第十六章 一元二次方程综合与测试课后测评
展开京改版八年级数学下册第十六章一元二次方程专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为( )
A.1 B.-1 C.1或-1 D.0
2、对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:
①当a<0,且b>a+c时,方程一定有实数根;
②若ac<0,则方程有两个不相等的实数根;
③若a-b+c=0,则方程一定有一个根为-1;
④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.
其中正确的有( )
A.①②③ B.①②④ C.②③ D.①②③④
3、参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )
A. B.
C. D.
4、在等式①;②;③;⑤;⑤中,符合一元二次方程概念的是( )
A.①⑤ B.① C.④ D.①④
5、已知关于x的一元二次方程:x2﹣2x+m=0有两个不相等的实数根x1,x2,则( )
A.x1+x2<0 B.x1x2<0 C.x1x2>﹣1 D.x1x2<1
6、一元二次方程2x2 - 1 = 6x化成一般形式后,常数项是 - 1,一次项系数是( )
A.- 2 B.- 6 C.2 D.6
7、若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )
A.a≥﹣且a≠0 B.a≤﹣ C.a≥﹣ D.a≤﹣且a≠0
8、下列方程中是一元二次方程的是( )
A.y+2=1 B.=0 C. D.
9、用配方法解方程,则方程可变形为( )
A. B. C. D.
10、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、智能音箱是市场上最火的智能产品之一,某商户一月份销售了100个智能音箱,三月份比一月份多销售44个,设该公司二、三月销量的月平均增长率为x,则可列方程为 _____.
2、关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为__.
3、若为整数,关于的一元二次方程有实数根,则整数的最大值为__________.
4、已知是关于的方程的一个根,则______.
5、阅读下列材料:
早在公元1世纪左右,我国著名的数学典籍《九章算术》中就已经对一元二次方程进行了研究:在“勾股”章中,根据实际问题列出方程x2 + 34x - 71000 = 0,给出该方程的正根为x = 250,并简略指出解该方程的方法:开方除之.其后,受此启发,有数学家研究了利用几何图形求解该方程的方法,对于丰富我国古代有关一元二次方程的研究具有重要的价值.用该方法求解的过程如下(如图):
第一步:构造
已知小正方形边长为x,将其边长增加17,得到大正方形.
第二步:推理
根据图形中面积之间的关系,可得(x+17)2 = x2 + 2 × 17x + 172.
由原方程x2 + 34x - 71000 = 0,得x2 + 34x = 71000.
所以(x+17)2 = 71000 + 172.
所以(x+17)2 = 71289.
直接开方可得正根x = 250.
依照上述解法,要解方程x2 + bx + c = 0(b > 0),请写出第一步“构造”的具体内容与第二步中“(x+17)2 = 71000 + 172”相应的等式是 _________ .
三、解答题(5小题,每小题10分,共计50分)
1、已知关于x的方程x2 - 5x + m = 0
(1)若方程有一根为 - 1,求m的值;
(2)若方程无实数根,求m的取值范围
2、用适当的方法解方程
(1);
(2).
3、解下列方程:
(1)x2﹣2x+1=25.
(2)3x(x - 1)= 2(x - 1).
4、近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员.网友看到苏爷爷的故事,纷纷订购表示支持.已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”).
(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元.求每箱中果和大果的售价分别是多少元?
(2)在(1)的条件下,正常情况平均每周可销售30箱大果.但为了减少库存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%.求每箱大果的售价应该降低多少元?
5、解下列方程:
(1)x2﹣2x=0;
(2)x2+4x﹣8=0.
-参考答案-
一、单选题
1、B
【分析】
根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可.
【详解】
解:根据题意将x=0代入方程可得:a2-1=0,
解得:a=1或a=-1,
∵a-1≠0,即a≠1,
∴a=-1,
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.
2、C
【分析】
①令,,,由判别式即可判断;②若,则a、c异号,由判别式即可判断;③令得,即可判断;④取,,来进行判断即可.
【详解】
①由当,,,,方程此时没有实数根,故①错误;
②若,a、c异号,则,方程一定有两个不相等的实数根,所以②正确;
③令得,则方程一定有一个根为;③正确;
④当,,时,有两个不相等的根为,但方程只有一个根为1,故④错误.
故选:C.
【点睛】
本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键.
3、A
【分析】
设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可.
【详解】
解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:
,
故选:A.
【点睛】
题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.
4、B
【分析】
根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可.
【详解】
解:①,是一元二次方程,符合题意;
②,不是方程,不符合题意;
③,不是整式方程,不符合题意;
⑤,是二元一次方程,不符合题意;
⑤,是一元一次方程,不符合题意
故符合一元二次方程概念的是①
故选B
【点睛】
本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键.
5、D
【分析】
利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案.
【详解】
解:由题意可知:两根之和:,故A错误,
x2﹣2x+m=0有两个不相等的实数根,
,解得:,
由根与系数的关系可知:,
只有D选项正确,
故选:D.
【点睛】
本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键.
6、B
【分析】
先把一元二次方程化为一般形式,即可得出一次项系数.
【详解】
∵一元二次方程化为一般形式,
∴一次项系数是.
故选:B.
【点睛】
本题考查一元二次方程的相关概念,一元二次方程一般形式:,其中为二次项系数,为一次项系数,为常数项.
7、A
【分析】
根据一元二次方程的定义和一元二次方程根的判别式求解即可.
【详解】
解:∵关于x的一元二次方程ax2+x﹣1=0有实数根,
∴,
解得:且.
故选A.
【点睛】
本题主要考查一元二次方程根的判别式和一元二次方程的定义,熟练掌握根的判别式和一元二次方程的定义是解题的关键.
8、B
【分析】
只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可.
【详解】
解:A.是二元二次方程,故本选项不合题意;
B.是一元二次方程,故本选项符合题意;
C.是二元二次方程,故本选项不合题意;
D.当a=0时,不含二次项,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.
9、D
【分析】
根据配方法解一元二次方程步骤变形即可.
【详解】
∵
∴
∴
∴
∴
故选:D.
【点睛】
本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.
10、D
【分析】
先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.
【详解】
解:
,
,
,故甲出现错误;
即
或 故乙出现了错误;
而丙解方程时,移项没有改变符号,丁出现了计算错误;
所以出现错误的人数是4人,
故选D
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.
二、填空题
1、100(1+x)2=144.
【分析】
设该公司二、三月销量的月平均增长率为x,利用增长率表示三月销量100(1+x)2,列方程即可.
【详解】
解:设该公司二、三月销量的月平均增长率为x,
则可列方程为100(1+x)2=100+44,
即100(1+x)2=144,
故答案为:100(1+x)2=144.
【点睛】
本题考查一元二次方程解增长率问题应用题,掌握一元二次方程解增长率问题应用题方法与步骤,抓住等量关系利用增长率表示三月销售智能音箱100(1+x)2与100+44相等列方程是解题关键.
2、3
【分析】
把x=2代入方程x2+bx﹣10=0得关于b的方程,然后解方程即可.
【详解】
解:∵关于x的一元二次方程x2+bx﹣10=0的一个根为2,
∴把x=2代入方程x2+bx﹣10=0得4+2b﹣10=0,
解得b=3.
故答案为:3.
【点睛】
本题考查了一元二次方程的解和解一元一次方程。解题的关键在于能够熟知一元二次方程解得定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
3、3
【分析】
根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案.
【详解】
解:由题意得:,
解得,且,
为整数,
整数的最大值为3,
故答案为:3.
【点睛】
本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键.
4、2025
【分析】
把代入方程可得再把化为,再整体代入求值即可.
【详解】
解: 是关于的方程的一个根,
故答案为:
【点睛】
本题考查的是方程的解,求解代数式的值,掌握“利用整体代入法求解代数式的值”是解本题的关键.
5、
【分析】
根据题中例题及配方法求解即可得.
【详解】
解:第一步:“构造”
内容为:已知小正方形边长为x,将其边长增加,得到大正方形;
第二步:“推理”
,
∵,得,
∴,
故答案为:.
【点睛】
题目主要考查利用配方法解一元二次方程的应用,理解题中例题及配方法是解题关键.
三、解答题
1、(1)m的值为.(2)
【分析】
(1)将代入原方程,即可求出m的值.
(2)令根的判别式,即可求出m的取值范围.
【详解】
(1)解:方程有一根为 - 1,
是该方程的根,
,解得:,
故m的值为.
(2)解:方程无实数根
,解得:.
【点睛】
本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.
2、(1),,(2)
【分析】
用因式分解法解方程即可.
【详解】
解:(1),
,
,
,;
(2),
,
,
.
【点睛】
本题考查了一元二次方程解法,解题关键是熟练运用因式分解法解方程.
3、(1),;(2),
【分析】
(1)利用直接开方法解方程即可;
(2)利用提取公因式法解方程即可.
【详解】
解:(1),
,
∴,
;
(2)3x(x-1)=2(x-1),
3x(x-1)-2(x-1)=0,
(x-1)(3x-2)=0,
∴x-1=0或3x-2=0,
∴x1=1,.
【点睛】
本题主要考查了解一元二次方程的方法,准确计算是解题的关键.
4、(1)每箱中果的售价为36元,每箱大果的售价为44元;(2)每箱大果的售价应该降低4元.
【分析】
(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据“2箱中果,1箱大果,花了116元; 1箱中果,2箱大果,花了124元”列出二元一次方程组求解即可;
(2)根据“每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%”列出方程和不等式求解即可.
【详解】
解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据题意得
解得,
所以,每箱中果的售价为36元,每箱大果的售价为44元;
(2)设每箱大果的售价应该降低m元,根据题意得,
解①得,,
解②得,
∴
所以,每箱大果的售价应该降低4元
【点睛】
本题本题主要考查了二元一次方程组的应用、一元一次不等式的应用以及一元二次方程的应用,正确找出等量关系是解答本题的关键.
5、(1);(2).
【分析】
(1)利用因式分解法解一元二次方程即可得;
(2)利用公式法解一元二次方程即可得.
【详解】
解:(1),
,
或,
;
(2),
此方程中的,
则,即,
所以.
【点睛】
本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共18页。试卷主要包含了用配方法解方程,则方程可变形为,方程的解是等内容,欢迎下载使用。
北京课改版第十六章 一元二次方程综合与测试复习练习题: 这是一份北京课改版第十六章 一元二次方程综合与测试复习练习题,共16页。试卷主要包含了一元二次方程的根的情况是,股市规定等内容,欢迎下载使用。
初中数学第十六章 一元二次方程综合与测试测试题: 这是一份初中数学第十六章 一元二次方程综合与测试测试题,共17页。试卷主要包含了方程x2=4x的解是,下列事件为必然事件的是等内容,欢迎下载使用。