初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测,共16页。试卷主要包含了下列所给方程中,没有实数根的是,下列命题中,逆命题不正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.112、若一元二次方程x25x+k =0的一根为2,则另一个根为( )A.3 B.4 C.5 D.63、将方程化为一元二次方程的一般形式,正确的是( ).A. B. C. D.4、一元二次方程x2+2x=1的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定5、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )A. B.12 C. D.或6、下列方程中,是关于x的一元二次方程是( )A. B. C. D.7、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )A.7 B.11 C.15 D.198、下列所给方程中,没有实数根的是( )A. B.C. D.9、下列命题中,逆命题不正确的是( )A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方10、一元二次方程的二次项系数、一次项系数、常数项分别是( )A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知是一元二次方程的一根,则方程的另一个根为______.2、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______ 3、关于x的方程的一个根是,则m=________.4、凌源市“百合节”观赏人数逐年增加,据有关部门统计,2018年约为5万人次,2020年约为6.8万人次,设观赏人数年均增长率为x,则可列方程________________.5、已知关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,则k的取值范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、(1)用配方法解方程:3x2﹣6x﹣1=0;(2)用公式法解方程:4x2﹣8x+3=0.2、如图,在一块长为30m、宽为20m的矩形地面上,要修建两横两竖的道路(横竖道路各与矩形的一条边平行),横、竖道路的宽度比为2:3,剩余部分种上草坪,如果要使草坪的面积是地面面积的四分之一,应如何设计道路的宽度?3、2021年12月9日,在神州十三号载人飞船上,翟志刚、王亚平、叶光富三位航天员为广大青少年开讲“天宫课堂”第一课,这是中国空间站首次太空授课活动.在此期间,我校“对话太空”兴趣小组举行了航天科普知识有奖竞答活动,并购买“神州载人飞船”模型作为奖品,学校在商店里了解到:如果一次性购买数量不超过10个,每个模型的单价为40元;如果一次性购买数量超过10个,每多购买一个,每个模型的单价均降低0.5元,但每个模型最低单价不低于30元,若学校为购买“神州载人飞船”模型一次性付给商店900元,请求出学校购买“神州载人飞船”模型的数量.4、解方程:(1)(2)5、解方程:(1)x2+4x﹣1=0 (2)x(x-2)+x-2=0 -参考答案-一、单选题1、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.2、A【分析】设方程的另一根为t,根据根与系数的关系得到2+t=5,求出t即可.【详解】解:设方程的另一根为t,根据题意得2+t=5,解得t=3.故选A.【点睛】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=,x1·x2=.3、B【分析】根据一元二次方程的概念,判断即可,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:化为一元二次方程的一般形式为故选B【点睛】本题考查了一元二次方程的概念,掌握一元二次方程的一般形式是解题的关键.4、A【分析】方程整理后得出x2+2x﹣1=0,求出Δ=8>0,再根据根的判别式的内容得出答案即可.【详解】解:x2+2x=1,整理得,x2+2x﹣1=0,∵Δ=22﹣4×1×(﹣1)=8>0,∴方程有两个不相等的实数根,故选:A.【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.5、D【分析】先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可.【详解】∵,∴(x-2)(x-5)=0,∴∴另一边长为=或=,∴矩形的面积为2×=或5×=5,故选D.【点睛】本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键.6、C【分析】根据只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程选择即可.【详解】A.当a=0时,是一元一次方程,该选项不符合题意;B.分母上有未知数,是分式方程,该选项不符合题意;C.是关于x的一元二次方程,该选项符合题意;D.经整理后为,是一元一次方程,该选项不符合题意.故选择C.【点睛】本题考查识别一元二次方程,理解一元二次方程的定义是解答本题的关键.7、D【分析】先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项.【详解】解:,解得:,∴这个三角形的两边的长为6和11,∴第三边长x的范围为5<x<17;故选D.【点睛】本题主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键.8、D【分析】逐一求出四个选项中方程的根的判别式Δ的值,取其小于零的选项即可得出结论.【详解】解:A、∵Δ=(﹣2)2﹣4×1×0=4>0,∴一元二次方程有两个不相等的实数根; B、∵Δ=(﹣4)2﹣4×5×(-2)=56>0,∴一元二次方程有两个不相等的实数根;C、∵Δ=(﹣4)2﹣4×3×1=4>0,∴一元二次方程有两个不相等的实数根; D、∵Δ=(﹣3)2﹣4×4×2=-23<0,∴一元二次方程没有实数根.故选:D.【点睛】本题考查了一元二次方程根的判别式,牢记“当Δ<0时,一元二次方程没有实数根”是解题的关键.9、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.10、B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.【详解】解:∵一元二次方程2x2+x-5=0,∴二次项系数、一次项系数、常数项分别是2、1、-5,故选:B.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).二、填空题1、【分析】直接根据根与系数的关系即可求出另一个根.【详解】设方程另一个根为,则,解得故答案为: .【点睛】本题考查了根与系数的关系和一元二次方程的解,熟记是解题的关键.也可以把代入方程求出k的值,再解方程求出另一而根.2、0【分析】根据因式分解法即可求出答案.【详解】解:∵x2=3x,
∴x2-3x=0,
∴,
∴x=0或x-3=0,
∴x1=0,x2=3,
故答案为:0.【点睛】本题考查解一元二次方程,解题的关键是熟练运用因式分解法.3、【分析】将代入方程即可求解.【详解】解:关于x的方程的一个根是,解得故答案为:【点睛】本题考查了一元二次方程的解定义,掌握方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.4、5(1+x)²=6.8【分析】根据2015年及2017年的观赏人数,即可得出关于x的一元二次方程,此题得解.【详解】解:由题意得:5(1+x)²=6.8故答案为:5(1+x)²=6.8【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5、【分析】根据方程的系数结合根的判别式Δ>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,∴Δ=(﹣4)2﹣4×2×(k﹣)>0,解得:.故答案为:【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程根的判别式的符号对应的三种根的情况是解题的关键.(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.三、解答题1、(1)x1=,x2=;(2)x1=,x2=.【分析】(1)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,再代入公式求出即可.【详解】解:(1)∵3x2-6x-1=0,∴x2-2x=,配方得:x2-2x+1=+1,∴(x-1)2=,∴x-1=,∴x1=,x2=;(2)∵4x2﹣8x+3=0,∴a=4,b=-8,c=3,∴△=64-4×4×3=16>0,∴x==,∴x1=,x2=.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:因式分解法、直接开平方法、公式法、配方法.2、横着的道路的宽为,则竖着的道路宽为.【分析】设横着的道路的宽为,则竖着的道路宽为,然后根据要使草坪的面积是地面面积的四分之一,列出方程求解即可.【详解】解:设横着的道路的宽为,则竖着的道路宽为,由题意得:,∴,∴,∴解得或,∵当时,,不符合题意,∴,∴横着的道路的宽为,则竖着的道路宽为.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于正确理解题意,列出方程求解.3、30个.【分析】设学校一次性购买这种“神州载人飞船”模型x个,然后找出等量关系,列出方程,解方程即可求出答案.【详解】解:根据题意,设学校一次性购买这种“神州载人飞船”模型x个,则实际销售单价为:400.5×(x10)=450.5x(元);∵,∴;∴,解得:或(舍去);∴学校购买30个“神州载人飞船”模型的数量.【点睛】本题考查了一元二次方程的应用,解题的关键是设出“神州载人飞船”模型的个数并表示出销售单价.4、(1)原方程无解;(2).【分析】(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;(2)方程两边同乘以化成整式方程,再解一元二次方程即可得.【详解】解:(1),方程两边同乘以,得,移项、合并同类项,得,系数化为1,得,经检验,不是分式方程的解,所以原方程无解;(2),方程两边同乘以,得,移项、合并同类项,得,因式分解,得,解得或,经检验,不是分式方程的解;是分式方程的解,所以原方程的解为.【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.5、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=2,x2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.【详解】解:(1)∵x2+4x﹣1=0,∴a=1,b=4,c=﹣1,∵△=16+4=20,∴x=,∴,;(2)x(x-2)+x-2=0,因式分解得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1.【点睛】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习,共15页。试卷主要包含了一元二次方程x2﹣x=0的解是,一元二次方程x2=-2x的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试习题,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是,方程x2=4x的解是,股市规定,一元二次方程的二次项系数,已知方程的两根分别为m等内容,欢迎下载使用。