北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题
展开京改版八年级数学下册第十六章一元二次方程同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
2、把方程化成(a,b为常数)的形式,a,b的值分别是( ).
A.2,7 B.2,5 C.,7 D.,5
3、已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是( )
A.﹣2 B.2 C.﹣1 D.1
4、下列一元二次方程中有两个相等实数根的是( )
A.x2﹣8=0 B.x2﹣4x+4=0 C.2x2+3=0 D.x2﹣2x﹣1=0
5、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )
A.﹣2 B.2 C.﹣4 D.4
6、某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有( )支队伍参赛.
A.4 B.5 C.6 D.7
7、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )
A.-10 B.10 C.-6 D.6
8、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )
A. B.
C. D.
9、下列方程中是一元二次方程的是( )
A.2x+1=0 B.y2+x=1 C.x2+1=0 D.
10、参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x,则由题意可列方程为 ________________,可得x=____.
2、关于x的方程的一个根是,则m=________.
3、某班学生去参加义务劳动,其中一组到一果园去摘梨子, 第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,…以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为 _______
4、已知关于x的一元二次方程的一个根是2,则k的值是______.
5、若(m+1)xm(m-2) -1+2mx-1=0是关于x的一元二次方程,则m的值是________.
三、解答题(5小题,每小题10分,共计50分)
1、用配方法解方程3﹣6x+1=0.
2、用合适的方法解下列方程
(1)36x2=81.
(2)3x2﹣10x+6=0;
(3)(x﹣3)2﹣2(x+1)=x﹣7.
3、解下列方程:
(1);
(2).
4、解下列方程:
(1);
(2).
5、当k为何值时,一元二次方程(k-1)x2-6x+9=0总有实数根.
-参考答案-
一、单选题
1、C
【分析】
设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.
【详解】
解:设该商店销售额平均每月的增长率为x,
依题意得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
∴该商店销售额平均每月的增长率为50%.
故选:C.
【点睛】
本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.
2、C
【分析】
利用配方法将一元二次方程进行化简变形即可得.
【详解】
解:,
,
,
,
∴,,
故选:C.
【点睛】
题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.
3、D
【分析】
用根与系数的关系可用k表示出已知等式,可求得k的值.
【详解】
解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,
∴x1+x2=k,x1x2=k﹣3,
∵x12+x22=5,
∴(x1+x2)2﹣2x1x2=5,
∴k2﹣2(k﹣3)=5,
整理得出:k2﹣2k+1=0,
解得:k1=k2=1,
故选:D.
【点睛】
本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.
4、B
【分析】
由根的判别式为Δ=b2﹣4ac,挨个计算四个选项中的Δ值,由此即可得出结论.
【详解】
解:A、∵Δ=b2﹣4ac=02﹣4×1×(﹣8)=32>0,
∴该方程有两个不相等的实数根;
B、∵Δ=b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=0,
∴该方程有两个相等的实数根;
C、∵Δ=b2﹣4ac=02﹣4×2×3=﹣24<0,
∴该方程没有实数根;
D、∵Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,
∴该方程有两个不相等的实数根.
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数.
5、B
【分析】
根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.
【详解】
解:∵一元二次方程x2+k﹣3=0有一个根为1,
∴将代入得,,解得:.
故选:B.
【点睛】
此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.
6、C
【分析】
由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数1)=30,把相关数值代入计算即可.
【详解】
解:有x个球队参加比赛,
根据题意可列方程为:x(x1)=30,
解得:或(舍去);
∴共有6支队伍参赛;
故选:C
【点睛】
本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.
7、D
【分析】
根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.
【详解】
解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,
∴x1+x2=﹣m=-2+4,解得:m=﹣2,
x1•x2=n=-2×4,解得:n=-8,
∴m-n=﹣2-(-8)=6.
故选D.
【点睛】
本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.
8、C
【分析】
设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.
【详解】
解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,
依题意得:.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.
9、C
【详解】
解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;
B、含有2个未知数,不是一元二次方程,故本选项不符合题意;
C、是一元二次方程,故本选项符合题意;
D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.
10、A
【分析】
设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可.
【详解】
解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:
,
故选:A.
【点睛】
题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.
二、填空题
1、100(1﹣x)2=81 10%
【分析】
设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解.
【详解】
解:根据题意得:100(1﹣x)2=81,
解得:x=0.1=10%或x=1.1(舍去),
故答案为:100(1﹣x)2=81,10%.
【点睛】
本题考查一元二次方程解降价的百分率问题,掌握一元二次方程解降价的百分率问题的方法与步骤是解题关键.
2、
【分析】
将代入方程即可求解.
【详解】
解:关于x的方程的一个根是,
解得
故答案为:
【点睛】
本题考查了一元二次方程的解定义,掌握方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.
3、11
【分析】
设这组学生的人数为 人,根据题意列出方程,解出即可.
【详解】
解:设这组学生的人数为 人,根据题意得:
,
即
解得: .
故答案为:11
【点睛】
本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.
4、-2
【分析】
知道方程的一根,把x=2代入方程中,即可求出未知量k.
【详解】
解:将x=2代入一元二次方程x2-x+k=0,
可得:4-2+k=0,
解得k=-2,
故答案为:-2.
【点睛】
本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.
5、3
【分析】
本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.
【详解】
解:∵是关于x的一元二次方程,
∴,即,
解得m=3.
故答案为:3.
【点睛】
本题主要考查了一元二次方程的定义,解一元二次方程,解题的关键在于熟知一元二次方程的定义.
三、解答题
1、=1+,=1﹣
【分析】
方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.
【详解】
解:方程移项得:3﹣6x=﹣1,
即﹣2x=﹣,
配方得:=,
开方得:x﹣1=±,
解得 =1+,=1﹣.
【点睛】
本题考查了公式法解一元二次方程,熟练掌握求根公式是解题的关键.
2、(1),
(2),
(3)x1=2,x2=7
【分析】
(1)方程利用直接开平方法即可求出解.
(2)利用公式法求解可得;
(3)整理后,利用因式分解法求解即可.
(1)
解:∵,
∴,
∴,;
(2)
解:∵,
∴,,,
∴,
∴,
∴,;
(3)
解:∵,
∴,
∴,
∴,
∴,.
【点睛】
本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.
3、(1);(2)
【分析】
(1)直接根据因式分解法解一元二次方程即可;
(2)先将方程化为一般形式,进而根据因式分解法解一元二次方程即可.
【详解】
解:(1)
解得
(2)
即
解得
【点睛】
本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.
4、(1),;(2),.
【分析】
(1)两边同除以3,然后直接开平方法进行求解即可;
(2)根据公式法可直接进行求解.
【详解】
解:(1)
,
∴,
∴,;
(2)
∵,
∴,
∴,
∴,.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
5、k≤2且k≠1.
【分析】
由方程为一元二次方程可得知k-1≠0;由方程总有实数根可得出根的判别式≥0,解关于k的一元一次不等式即可得出结论.
【详解】
解:根据判别式的意义得到=(-6)2﹣4×(k-1)×9≥0,且k-1≠0,
解得k≤2且k≠1.
【点睛】
本题考查了一元二次方程的定义以及根的判别式,解题的关键是根与方程有实数根得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该类型题目时,牢记根的判别式的意义即可.
2020-2021学年第十四章 一次函数综合与测试精练: 这是一份2020-2021学年第十四章 一次函数综合与测试精练,共30页。试卷主要包含了若一次函数y=kx+b,点P在第二象限内,P点到x,已知点A等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练,共15页。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共16页。试卷主要包含了一元二次方程x2=-2x的解是等内容,欢迎下载使用。