初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时训练
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时训练,共17页。试卷主要包含了若方程的一个根为,则的值是,一元二次方程根的情况是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.2、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.113、一元二次方程的解是( )A. B.C., D.4、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )A. B.C. D.5、方程2x2-3x=2的一次项系数和常数项分别是( )A.3和2 B.-3和2 C.3和-2 D.-3和-26、若方程的一个根为,则的值是( )A.7 B. C.4 D.7、已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2=4的根,则此三角形的周长为( )A.17 B.11 C.15 D.11或158、下列一元二次方程中有两个相等实数根的是( )A.x2﹣8=0 B.x2﹣4x+4=0 C.2x2+3=0 D.x2﹣2x﹣1=09、一元二次方程根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断10、某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有( )个班级.A.8 B.9 C.10 D.11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程x2﹣m=0的一个解为3,则m的值为___.2、已知的算术平方根为a,则关于x的方程的根为____________.3、一元二次方程3x2=3﹣2x的根的判别式的值为 _____.4、若关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,则实数k的取值范围是 _____.5、如图1,塔吊是建筑工地上常用的一种起重设备,可以用来搬运货物.如图2,已知一款塔吊的平衡臂ABC部分构成一个直角三角形,且,起重臂AD可以通过拉伸BD进行上下调整.现将起重臂AD从水平位置调整至位置,使货物E到达位置(挂绳DE的长度不变且始终与地面垂直).此时货物E升高了24米,且到塔身AH的距离缩短了16米,测得,则AC的长为_____________米.三、解答题(5小题,每小题10分,共计50分)1、阅读材料:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2,x1*x2.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1,所以.根据上述材料解决以下问题:(1)材料理解:一元二次方程5x2+10x﹣1=0的两个根为x1,x2,则x1+x2= ,x1x2= .(2)类比探究:已知实数m,n满足7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,求m2n+mn2的值:2、解方程:3、解方程:(1)x2+4x﹣1=0 (2)x(x-2)+x-2=04、解方程:5、某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费.(1)若a=12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元?(2)若如表是某户居民4月份和5月份的用水量和缴费情况:月份用水量(吨)交水费总金额(元)4186252486根据上表数据,求规定用水量a的值 -参考答案-一、单选题1、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.2、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.3、C【分析】根据因式分解法解一元二次方程即可.【详解】解:即或解得,故选C【点睛】本题考查了因式分解法解一元二次方程,掌握解一元二次方程的方法是解题的关键.4、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C.【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.5、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.【详解】解:一次项系数为:-3,常数项为:-2,故选D.【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.6、D【分析】将代入方程求解即可.【详解】解:将代入可得:,解得:,故选:D.【点睛】题目主要考查方程与根的关系,将根代入方程求解是解题关键.7、C【分析】先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.【详解】解:(x﹣3)2=4,x﹣3=±2,解得x1=5,x2=1.若x=5,则三角形的三边分别为4,5,6,其周长为4+5+6=15;若x=1时,6﹣4=2>1,不能构成三角形,8、B【分析】由根的判别式为Δ=b2﹣4ac,挨个计算四个选项中的Δ值,由此即可得出结论.【详解】解:A、∵Δ=b2﹣4ac=02﹣4×1×(﹣8)=32>0,∴该方程有两个不相等的实数根;B、∵Δ=b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=0,∴该方程有两个相等的实数根;C、∵Δ=b2﹣4ac=02﹣4×2×3=﹣24<0,∴该方程没有实数根;D、∵Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根.故选:B.【点睛】本题考查了一元二次方程根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数.9、A【分析】计算出判别式的值,根据判别式的值即可判断方程的根的情况.【详解】∵,,,∴,∴方程有有两个不相等的实数根.故选:A【点睛】本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.10、A【分析】设该校八年级有x个班级,利用比赛的总场次数=参赛的班级数×(参赛的班级数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设该校八年级有x个班级,依题意得:x(x﹣1)=28,整理得:x2﹣x﹣56=0,解得:x1=8,x2=﹣7(不合题意,舍去).故选:A.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题1、9【分析】根据一元二次方程的解定义,代入即可求得的值.【详解】解:把x=3代入x2﹣m=0得9﹣m=0,解得m=9.故答案为9.【点睛】本题考查了一元二次方程的解,掌握一元二次方程解的定义是解题的关键.一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.2、x1=5,x2=1.【分析】先根据算术平方根求出a的值,在代入解一元二次方程即可.【详解】解:∵=9,9的算术平方根是3,∴a=3,∴关于x的方程(x-a)2=4变为(x-3)2=4∴x-3=±2解得x1=5,x2=1.故答案为:x1=5,x2=1.【点睛】本题考查了算术平方根的求法和一元二次方程的解法,做题的关键是求出a的值.3、40【分析】先把一元二次方程化为一般式,然后利用一元二次方程根的判别式直接计算即可解答.【详解】解:∵,∴,∴,,,,故答案为:40.【点睛】本题考查一元二次方程根的判别式,熟练掌握该知识点是解题关键.4、 且【分析】利用一元二次方程根的判别式,即可求解.【详解】解:∵关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,∴且 ,解得: 且 .故答案为: 且【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.5、7【分析】过点B作于点M,由题意易得,则有四边形是矩形,设,则,然后根据勾股定理可得AF的长,进而问他可求解.【详解】解:过点B作于点M,如图所示:由题意得:,∴四边形是矩形,∴,设,则,在中,由勾股定理得:,解得:,∴,设,∴,∴,在中,,在中,,∴,整理得:,解得:;故答案为7.【点睛】本题主要考查勾股定理、矩形的性质与判定及一元二次方程的解法,熟练掌握勾股定理、矩形的性质与判定及一元二次方程的解法是解题的关键.三、解答题1、(1)﹣2;;(2)m2n+mn2=.【分析】(1)直接根据根与系数的关系可得答案;(2)由题意得出m、n可看作方程,据此知m+n=1,mn=,将其代入计算可得;【详解】解:(1)∵一元二次方程5x2+10x﹣1=0的两个根为x1,x2,∴x1+x2,x1x2;故答案为:﹣2;;(2)∵7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,∴m、n可看作方程7x2﹣7x﹣1=0,∴m+n=1,mn,∴m2n+mn2=mn(m+n);【点睛】本题主要考查根与系数的关系,求代数式的值,解题的关键是根据题意建立合适的方程及运算法则进行解题.2、x1=-4,x2=-2【分析】根据因式分解法即可求解.【详解】∴x+4=0或x+2=0解得x1=-4,x2=-2.【点睛】本题主要考查解一元二次方程,解题的关键是掌握因式分解法解方程.3、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=2,x2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.【详解】解:(1)∵x2+4x﹣1=0,∴a=1,b=4,c=﹣1,∵△=16+4=20,∴x=,∴,;(2)x(x-2)+x-2=0,因式分解得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1.【点睛】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.4、,【分析】整理成一般式后,利用配方法求解可得.【详解】.,配方,得:,开平方,得:,或,解得,所以,原方程的根为:,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5、(1) ;(2)10【分析】(1)根据题意得:该用户3月份用水量超过a吨,然后根据“用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费”,即可求解;(2)若 ,可得 ,从而得到 ,再由“用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费”,列出方程,即可求解.【详解】解:(1)根据题意得:该用户3月份用水量超过a吨, 元;(2)若 ,有 ,解得: ,即 ,不合题意,舍去,∴ ,根据题意得: ,解得: (舍去),答:规定用水量a的值为10吨.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.
相关试卷
这是一份2020-2021学年第十六章 一元二次方程综合与测试随堂练习题,共18页。试卷主要包含了一元二次方程的根的情况是,下列方程是一元二次方程的是,下列命题中,逆命题不正确的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试精练,共16页。试卷主要包含了若方程的一个根为,则的值是等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试同步测试题,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。