![2021-2022学年度京改版八年级数学下册第十六章一元二次方程定向攻克试题(无超纲)01](http://www.enxinlong.com/img-preview/2/3/12700305/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十六章一元二次方程定向攻克试题(无超纲)02](http://www.enxinlong.com/img-preview/2/3/12700305/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十六章一元二次方程定向攻克试题(无超纲)03](http://www.enxinlong.com/img-preview/2/3/12700305/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学北京课改版第十六章 一元二次方程综合与测试当堂检测题
展开京改版八年级数学下册第十六章一元二次方程定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列一元二次方程中,有一个根为0的方程是( )
A.x2﹣4=0 B.x2﹣4x=0 C.x2﹣4x+4=0 D.x2﹣4x﹣4=0
2、方程x2=4x的解是( )
A.x=4 B.x=2 C.x=4或x=0 D.x=0
3、下列一元二次方程两实数根和为-4的是( )
A. B.
C. D.
4、已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2=4的根,则此三角形的周长为( )
A.17 B.11 C.15 D.11或15
5、一个矩形的长是宽的3倍,若把它的长、宽分别加1后,面积增加了9,求原矩形的长与宽.若设原矩形的宽为,可列方程为( )
A. B. C. D.
6、一元二次方程的一个根为,那么c的值为( ).
A.9 B.3 C. D.
7、下表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为( )
x | ﹣2.1 | ﹣2.2 | ﹣2.3 | ﹣2.4 |
y | ﹣1.39 | ﹣0.76 | ﹣0.11 | 0.56 |
A.x≈﹣2.15 B.x≈﹣2.21 C.x≈﹣2.32 D.x≈﹣2.41
8、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
9、一元二次方程的二次项系数、一次项系数、常数项分别是( )
A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,5
10、一元二次方程的两个根是 ( )
A., B., C., D.,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是_____.
2、 “降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.
3、设x1,x2是方程x2-3x-1=0的两个根,则x1+x2=_____,x1x2=______.
4、关于的一元二次方程有一个根为1,则的值为________.
5、若关于的一元二次方程有实数根,则实数的取值范围是__________.
三、解答题(5小题,每小题10分,共计50分)
1、(1)计算:
(2)计算:
(3)解方程:
(4)解方程:
2、已知关于x的一元二次方程.
(1)求证:无论k取何值,该方程总有实数根;
(2)已知等腰三角形的一边a为2,另两边恰好是这个方程的两个根,求k的值.
3、解方程:2x2+x﹣15=0.
4、我们知道,整式,分式,二次根式等都是代数式,代数式是用基本运算符号连接起来的式子,而当被除数是一个二次根式,除数是一个整式时,求得的商就会出现类似这样的形式,我们称形如这种形式的式子称为根分式,例如,都是根分式.
(1)请根据以上信息,写出一个取值范围是x>2的根分式: ;
(2)已知两个根分式M=与N=.
①是否存在x的值使得N2﹣M2=1,若存在,请求出x的值,若不存在,请说明理由;
②当M2+N2是一个整数时,写出两个满足条件的无理数x的值.
5、解分式方程:
-参考答案-
一、单选题
1、B
【分析】
根据方程根的定义,将x=0代入方程使得左右两边相等的即可确定正确的选项.
【详解】
解:A.当x=0时,02﹣4=﹣4≠0,故错误,不符合题意;
B.当x=0时,02﹣0=0,故正确,符合题意;
C.当x=0时,02﹣0+4=4≠0,故错误,不符合题意;
D.当x=0时,02﹣0﹣4=﹣4≠0,故错误,不符合题意.
故选:B
【点睛】
本题考查了一元二次方程方程解的定义,熟知方程的解的定义是解题关键,注意一元二次方程的解又叫做一元二次方程的根.
2、C
【分析】
本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.
【详解】
解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,
∴x=0或x=4
故选:C.
【点睛】
本题主要考查了一元二次方程的计算,准确分析计算是解题的关键.
3、D
【分析】
根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可
【详解】
解:A. ,,,不符合题意;
B. ,,该方程无实根,不符合题意;
C. ,,该方程无实根,不符合题意;
D. ,,该方程有实根,且,符合题意;
故选D
【点睛】
本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键.
4、C
【分析】
先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.
【详解】
解:(x﹣3)2=4,
x﹣3=±2,
解得x1=5,x2=1.
若x=5,则三角形的三边分别为4,5,6,其周长为4+5+6=15;
若x=1时,6﹣4=2>1,不能构成三角形,
5、C
【分析】
分别用表示出长宽增加前后的矩形面积,然后作差即可得到所求方程.
【详解】
解:由题意可知,长宽增加前的矩形面积为:,
长宽增加后的矩形面积为:,
根据已知条件可得方程:,
故选:C.
【点睛】
本题主要是考查了一元二次方程的实际应用,熟练利用表示出对应图形的面积,这是解决与面积相关的应用题的关键.
6、D
【分析】
把x=-3代入方程,然后解关于c的方程即可.
【详解】
解:把x=-3代入方程得
9+c=0,
所以c=-9.
故选D.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
7、C
【分析】
根据表可得,方程2x2﹣2x﹣10=0的一个解应在﹣2.3与﹣2.4之间,再由y的值可得,它的根近似的看作是﹣2.3.
【详解】
∵当x=﹣2.3时,y=﹣0.11,
当x=﹣2.4时,y=0.56,
则方程的根﹣2.3<x<﹣2.4,
∵|﹣0.11|<|0.56|,
∴方程2x2﹣2x﹣10=0的一个近似解为x≈﹣2.32.
故选:C.
【点睛】
本题考查了用图象法求一元二次方程的近似根,解题的关键是看y值的变化.
8、C
【分析】
设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.
【详解】
解:设该商店销售额平均每月的增长率为x,
依题意得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
∴该商店销售额平均每月的增长率为50%.
故选:C.
【点睛】
本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.
9、B
【分析】
根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.
【详解】
解:∵一元二次方程2x2+x-5=0,
∴二次项系数、一次项系数、常数项分别是2、1、-5,
故选:B.
【点睛】
此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).
10、C
【分析】
分别令和,即可求出该方程的两个根.
【详解】
解:由可知:或,
方程的解为:,
故选:C.
【点睛】
本题主要是考查了一元二次方程的求解,一定要熟练掌握两项乘积为的一元二次方程的求解:令每一项都为0,即可求出该方程的两个根.
二、填空题
1、且
【详解】
利用判别式,根据一元二次方程的定义,列出不等式即可解决问题;
【分析】
解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,
∴△≥0且k≠0,
∴9+4k≥0,
∴k≥﹣,且k≠0,
故答案为k≥﹣且k≠0.
【点睛】
本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.
2、
【分析】
先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.
【详解】
解:
则或或
解得:
故答案为:
【点睛】
本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.
3、3 -1
【分析】
利用一元二次方程根与系数的关系,即可求解.
【详解】
解:∵x1,x2是方程x2-3x-1=0的两个根,
∴ .
故答案为:3,-1
【点睛】
本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.
4、-5
【分析】
直接利用一元二次方程的解的意义将x=1代入求出答案.
【详解】
解:∵关于x的一元二次方程的一个根是1,
∴12+m+4=0,
解得:m=-5.
故答案是:-5.
【点睛】
此题主要考查了一元二次方程的解,正确理解一元二次方程解的意义是解题关键.
5、且
【分析】
直接利用一元二次方程的定义结合根的判别式计算得出答案.
【详解】
解:∵关于x的一元二次方程kx2﹣x﹣=0有实数根,
∴ b2﹣4ac=1﹣4k×(﹣)=1+9k≥0,且k≠0,
解得: 且,
故答案为:且.
【点睛】
此题考查利用一元二次方程的定义及根的判别式求系数,正确理解一元二次方程根的三种情况是解题的关键,当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
三、解答题
1、(1);(2);(3);(4).
【分析】
(1)根据算术平方根的性质、负整指数幂的性质、正弦定义等知识计算解题;
(2)根据二次根式的性质、二次根式的乘除法法则、完全平方公式等知识计算解题,
(3)利用配方法解题;
(4)利用提公因式法结合整体思想解题.
【详解】
解:(1)
;
(2)
;
(3)
(4)
或
【点睛】
本题考查实数的混合运算、二次根式的乘除法、解一元二次方程等知识,涉及正弦、整体思想等知识,是重要考点,难度一般,掌握相关知识是解题关键.
2、(1)证明见解析;(2)k=3
【分析】
(1)根据根的判别式判断即可.
(2)由等腰三角形性质可判断出腰长为2和底为2两种情况,即可求得两个k,将k代入抛物线解析式求得x的解,再结合三角形三边关系判断即可.
【详解】
(1)∵中a=1,b=-k,c=k-1
∴
∵
∴
∴无论k取何值,该方程总有实数根
(2)若2为等腰三角形的腰,则另一边也为2,即2为方程的一个根
将x=2代入有
4-2k+k-1=0
解得k=3
则方程为
解得
等腰三角形三边长为2,2,1,符合三角形三边关系.
若2为等腰三角形的底,则两根为腰且相等,有
即
解得k=2
则方程为
解得
等腰三角形三边长为2,1,1,
1+1=2,不符合三角形三边关系,故k=2舍去.
综上所述k的值为3.
【点睛】
本题考查了一元二次方程根的判别式、等腰三角形性质以及三角形三边成立的关系,易错点为第二问未验证所算三边长是否能构成等腰三角形.
3、或;
【分析】
利用十字相乘法把方程左边进行因式分解得到(2x5)(x+3)=0,进而解两个一元一次方程即可.
【详解】
解:,
∴,
∴或,
∴或;
【点睛】
本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,题目比较好,难度适中.
4、(1);(2)①不存在,见解析;②,,,(答案不唯一)
【分析】
(1)依照根分式的定义写一个即可;
(2)①根据建立关于x的等式,即可求出x的值,注意需要判断x的值是否使根分式有意义;
②表达,分离整式,再判断什么时候为整数,求出x的值.
【详解】
(1)由题意得:
故答案是:;
(2)①∵,
∴,
∴,
解得:,
检验,当时,,
∴原分式方程无解,
从而不存在x的值使得;
②,
∴当是一个整数时,可以取1或2,等,
∴当x是无理数时,或,
,解得:,
,解得:,
∴,,(答案不唯一).
【点睛】
本题考查求解一元二次方程,分式与二次根式的应用,掌握题目给出的新定义是解题的关键.
5、x=4
【分析】
两边都乘以x2-4化为整式方程求解,然后验根即可.
【详解】
解:,
两边都乘以x2-4,得
2(x-2)-4x=-(x2-4),
x2-2x-8=0,
(x+2)(x-4)=0,
x1=-2,x2=4,
检验:当x=-2时,x2-4=0,
当x=4时,x2-4≠0,
∴x=4是原分式方程的根.
【点睛】
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共18页。试卷主要包含了方程的解是,一元二次方程根的情况是,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共17页。试卷主要包含了用配方法解方程,则方程可变形为,股市规定等内容,欢迎下载使用。
北京课改版八年级下册第十六章 一元二次方程综合与测试课后测评: 这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了一元二次方程根的情况是,下列事件为必然事件的是,股市规定,一元二次方程x2=-2x的解是等内容,欢迎下载使用。