北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题
展开这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题,共17页。试卷主要包含了关于x的一元二次方程等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若是关于的方程的一个根,则的值是( )
A. B. C.1 D.2
2、若关于x的一元二次方程的一根为1,则k的值为( ) .
A.1 B. C. D.0
3、用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是( )
A.(x﹣5)2=4 B.(x+5)2=4 C.(x﹣5)2=121 D.(x+5)2=121
4、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.4
5、已知一个直角三角形的两边长是方程的两个根,则这个直角三角形的斜边长为( )
A.3 B. C.3或 D.5或
6、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )
A.-10 B.10 C.-6 D.6
7、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为( )
A.1 B.-1 C.1或-1 D.0
8、一个矩形的长是宽的3倍,若把它的长、宽分别加1后,面积增加了9,求原矩形的长与宽.若设原矩形的宽为,可列方程为( )
A. B. C. D.
9、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
10、某商品售价准备进行两次下调,如果每次降价的百分率都是x,经过两次降价后售价由298元降到了268元,根据题意可列方程为( ).
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若是关于的一元二次方程的一个根,则的值为 ___________
2、疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,设二、三两个月新注册用户每月平均增长率是x,根据题意,可列方程为___________.
3、有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.
4、方程7x2﹣6x﹣5=0的解为 ______________.
5、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______
三、解答题(5小题,每小题10分,共计50分)
1、已知函数y1=x+1和y2=x2+3x+c(c为常数).
(1)若两个函数图像只有一个公共点,求c的值;
(2)点A在函数y1的图像上,点B在函数y2的图像上,A,B两点的横坐标都为m.若A,B两点的距离为3,直接写出满足条件的m值的个数及其对应的c的取值范围.
2、已知关于的一元二次方程.
(1)求证:该方程总有两个实数根;
(2)若该方程有一个根小于2,求的取值范围.
3、近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员.网友看到苏爷爷的故事,纷纷订购表示支持.已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”).
(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元.求每箱中果和大果的售价分别是多少元?
(2)在(1)的条件下,正常情况平均每周可销售30箱大果.但为了减少库存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%.求每箱大果的售价应该降低多少元?
4、解方程:x2﹣2x=2(x+1).
5、在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在边AB上(不与点A,B重合),将△ANM绕点M逆时针旋转90°得到△BPM.
问:△BPN的面积能否等于3,请说明理由.
-参考答案-
一、单选题
1、A
【分析】
将n代入方程,然后提公因式化简即可.
【详解】
解:∵是关于x的方程的根,
∴,即,
∵,
∴,即,
故选:A.
【点睛】
本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.
2、B
【分析】
把方程的根代入方程可以求出k的值.
【详解】
解:把1代入方程有:
1+2k+1=0,
解得:k=-1,
故选:B.
【点睛】
本题考查的是一元二次方程的解,正确理解题意是解题的关键.
3、A
【分析】
利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解.
【详解】
解:x2﹣10x+21=0,
移项得: ,
方程两边同时加上25,得: ,
即 .
故选:A
【点睛】
本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键.
4、D
【分析】
先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.
【详解】
解:
,
,
,故甲出现错误;
即
或 故乙出现了错误;
而丙解方程时,移项没有改变符号,丁出现了计算错误;
所以出现错误的人数是4人,
故选D
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.
5、D
【分析】
利用因式分解法求出一元二次方程的两根,按斜边是否是两根中的一个,进行分类讨论,通过勾股定理求斜边长,最后即可求出答案.
【详解】
解:,
因式分解得:,解得:,,
情况1:当为斜边的长时,此时斜边长为5,
情况2:当,,都为直角边长时,此时斜边长为,
这个直角三角形的斜边长为5或,
故选:D.
【点睛】
本题主要是考查了因式分解法求解方程,以及勾股定理求边长,在不确定直角边和斜边的情况下,一定要分类讨论,分情况进行求解.
6、D
【分析】
根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.
【详解】
解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,
∴x1+x2=﹣m=-2+4,解得:m=﹣2,
x1•x2=n=-2×4,解得:n=-8,
∴m-n=﹣2-(-8)=6.
故选D.
【点睛】
本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.
7、B
【分析】
根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可.
【详解】
解:根据题意将x=0代入方程可得:a2-1=0,
解得:a=1或a=-1,
∵a-1≠0,即a≠1,
∴a=-1,
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.
8、C
【分析】
分别用表示出长宽增加前后的矩形面积,然后作差即可得到所求方程.
【详解】
解:由题意可知,长宽增加前的矩形面积为:,
长宽增加后的矩形面积为:,
根据已知条件可得方程:,
故选:C.
【点睛】
本题主要是考查了一元二次方程的实际应用,熟练利用表示出对应图形的面积,这是解决与面积相关的应用题的关键.
9、C
【分析】
设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.
【详解】
解:设该商店销售额平均每月的增长率为x,
依题意得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
∴该商店销售额平均每月的增长率为50%.
故选:C.
【点睛】
本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.
10、D
【分析】
根据该商品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.
【详解】
解:依题意得:298(1-x)2=268.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
二、填空题
1、2025
【分析】
把代入方程即可求得的值,然后将其整体代入所求的代数式求解即可.
【详解】
把代入方程得:,
.
故答案为:2025.
【点睛】
本题主要考查一元二次方程的解及代数式求值,解题关键是熟练掌握计算法则.
2、
【分析】
设二、三两个月新注册用户每月平均增长率是x,根据该买菜APP今年一月份及三月份新注册用户人数,即可得出关于x的一元二次方程.
【详解】
解:设二、三两个月新注册用户每月平均增长率是x,
依题意,得:200(1+x)2=338,
故答案为:
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
3、14
【分析】
根据第一天患病的人数为1+1×传播的人数,第二天患病的人数为第一天患病的人数×传播的人数,再根据等量关系:第一天患病的人数+第二天患病的人数=225,列出方程求解即可.
【详解】
解:设每天一人传染了x人,则依题意得
1+x+(1+x)×x=225,
(1+x)2=225,
∵1+x>0,
∴1+x=15,
x=14.
答:每天一人传染了14人.
【点睛】
此题考查了一元二次方程的应用,读懂题意,得到两天患病人数的等量关系是解决本题的关键;本题的等量关系是:第一天患病的人数+第二天患病的人数=225.
4、
【分析】
找出a,b,c的值,代入求根公式即可求出解.
【详解】
解:7x2﹣6x﹣5=0
∵a=7,b=﹣6,c=﹣5,
∵△=36﹣4×7×(﹣5)=176>0,
∴ ,
∴x1=,x2=.
【点睛】
本题考查一元二次方程的解法,常用的解法有:直接开方法,配方法,公式法,因式分解法,做题的关键是根据题目选择合适的方法.
5、0
【分析】
根据因式分解法即可求出答案.
【详解】
解:∵x2=3x,
∴x2-3x=0,
∴,
∴x=0或x-3=0,
∴x1=0,x2=3,
故答案为:0.
【点睛】
本题考查解一元二次方程,解题的关键是熟练运用因式分解法.
三、解答题
1、(1)c=2;(2)当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个
【分析】
(1)只需求出y1=y2时对应一元二次方程有两个相等的实数根的c值即可;
(2)根据题意,AB=|m2+2m+c-1|=3,分m2+2m+c-1>0和m2+2m+c-1<0两种情况,利用一元二次方程根的判别式与根的关系求解即可.
【详解】
解:(1)根据题意,若两个函数图像只有一个公共点,
则方程x2+3x+c=x+1有两个相等的实数根,
∴△=b2-4ac=22-4(c-1)=0,
∴c=2;
(2)由题意,A(m,m+1),B(m,m2+3m+c)
∴AB=|m2+3m+c-m-1|=|m2+2m+c-1|=3,
①当m2+2m+c-1>0时,m2+2m+c-1=3,即m2+2m+c-4=0,
△=22-4(c-4)=20-4c,令△=20-4c=0,解得:c=5,
∴当c<5时,△>0,方程有两个不相等的实数根,即m有2个;
当c=5时,△=0,方程有两个相等的实数根,即m有1个;
当c>5时,△<0,方程无实数根,即m有0个;
②当m2+2m+c-1<0时,m2+2m+c-1=-3,即m2+2m+c+2=0,
△=22-4(c+2)=-4c-4,令△=-4c-4=0,解得:c=-1,
∴当c<-1时,△>0,方程有两个不相等的实数根,即m有2个;
当c=-1时,△=0,方程有两个相等的实数根,即m有1个;
当c>-1时,△<0,方程无实数根,即m有0个;
综上,当c>5时,m有0个;
当c=5时,m有1个;
当-1<c<5时,m有2个;
当c=-1时,m有3个;
当c<-1时,m有4个.
【点睛】
本题考查函数图象上点的坐标特征、一元二次方程根的判别式与根的关系、坐标与图形,解答的关键是熟练掌握一元二次方程根的判别式与根的关系:△>0,方程有两个不相等的实数根,△=0,方程有两个相等的实数根,△<0,方程无实数根.
2、(1)证明见解析;(2).
【分析】
(1)根据方程的系数结合根的判别式,可得△=(k−4)2≥0,由此可证出方程总有两个实数根;
(2)利用分解因式法解一元二次方程,可得出x1=4,x2=k,根据方程有一根小于2,即可得出k的取值范围.
【详解】
(1)∵,
∴△=,
∴方程总有两个实数根.
(2)∵,
∴,
解得:,,
∵该方程有一个根小于2,
∴.
【点睛】
本题考查了根的判别式、因式分解法解一元二次方程,利用因式分解法解一元二次方程表示出方程的两个根,熟练掌握当△≥0时,方程有两个实数根是解题关键.
3、(1)每箱中果的售价为36元,每箱大果的售价为44元;(2)每箱大果的售价应该降低4元.
【分析】
(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据“2箱中果,1箱大果,花了116元; 1箱中果,2箱大果,花了124元”列出二元一次方程组求解即可;
(2)根据“每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%”列出方程和不等式求解即可.
【详解】
解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据题意得
解得,
所以,每箱中果的售价为36元,每箱大果的售价为44元;
(2)设每箱大果的售价应该降低m元,根据题意得,
解①得,,
解②得,
∴
所以,每箱大果的售价应该降低4元
【点睛】
本题本题主要考查了二元一次方程组的应用、一元一次不等式的应用以及一元二次方程的应用,正确找出等量关系是解答本题的关键.
4、
【分析】
方程先整理成一般形式,再根据公式法求解即可;
【详解】
解:原方程可整理为,
∴方程的解,
∴.
【点睛】
本题考查了一元二次方程的解法,熟练掌握一元二次方程的求根公式是解题的关键.
5、△BPN的面积不能等于3,理由见解析
【分析】
如图,根据等腰直角三角形的性质和旋转性质得△BPM为△ANM绕点M逆时针旋转90°得到的,设AN=BP=x,则BN=4-x,连接NP,根据直角三角形的面积公式得到关于x的一元二次方程,然后求解即可得出结论.
【详解】
解:如图,∵在△ABC中,AB=BC,∠ABC=90°,M是AC的中点,
∴AM=BM,BM⊥AC,∠A=∠MBC=45°,
由旋转得∠NMP=90°,
∴∠AMN+∠NMB=∠NMB+∠BMP,即∠AMN=∠BMP,
∴△ANM≌△BPM(ASA),
∴△BPM为△ANM绕点M逆时针旋转90°得到的,
∴AN=BP,
设AN=BP=x,则BN=4-x,连接NP,
假设△BPN的面积能否等于3,则x(4-x)=3,
∴x2-4x+6=0,
∵△=42-4×1×6=-8<0,
∴该方程无实数解,
∴△BPN的面积不能等于3,
【点睛】
本题考查等腰三角形的性质、直角三角形斜边上的中线性质、旋转性质、全等三角形的判定与性质、等角的余角相等、三角形的面积公式、一元二次方程的应用,熟练掌握相关知识的联系与运用,证明△ANM≌△BPM是解答的关键.
相关试卷
这是一份数学八年级下册第十六章 一元二次方程综合与测试课时练习,共19页。试卷主要包含了若a是方程的一个根,则的值为,方程x2﹣x=0的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题,共16页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试课后复习题,共20页。试卷主要包含了小亮等内容,欢迎下载使用。