初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题
展开这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题,共20页。试卷主要包含了关于x的一元二次方程等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列关于的一元二次方程中,有两个相等的实数根的方程是( )
A. B. C. D.
2、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )
A. B.
C. D.
3、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )
A. B.
C. D.
4、用配方法解方程x2+4x=1,变形后结果正确的是( )
A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=2
5、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为( )
A.1 B.-1 C.1或-1 D.0
6、若是关于的方程的一个根,则的值是( )
A. B. C.1 D.2
7、已知一个直角三角形的两边长是方程的两个根,则这个直角三角形的斜边长为( )
A.3 B. C.3或 D.5或
8、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )
A.5 B.3 C.-3 D.-4
9、若m是方程x2+x﹣1=0的根,则2m2+2m+2020的值为( )
A.2022 B.2021 C.2020 D.2019
10、已知m,n是方程的两根,则代数式的值等于( )
A.0 B. C.9 D.11
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于x的方程(m+2)x|m|+2x-3=0是一元二次方程,则m=________.
2、已知,那么的值是______.
3、若是关于的一元二次方程的一个根,则的值为 ___________
4、一元二次方程3x2=3﹣2x的根的判别式的值为 _____.
5、已知(x+3)(x﹣2)+m=x2+x,则一元二次方程x2+x﹣m=0的根是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、随着元旦的到来,某超市准备在元旦期间推出甲、乙两种商品,甲型的售价是乙型的.
(1)元旦第一周该商家两种商品的总销售额为3600元,乙商品的销售额是甲商品的2倍,销售量比甲商品多40件,求甲商品销售了多少件?
(2)为增加销量,该商家第二周决定将乙商品的售价下调%,甲商品的售价保持不变,结果与第一周相比,乙商品的销量增加了%,甲商品的销量增加了a%,最终第二周的销售额比第一周的销售额增加了%,求a的值.
2、用合适的方法解下列方程:
(1)x2﹣4x﹣5=0;
(2)2x2﹣6x﹣3=0;
(3)(2x﹣3)2=5(2x﹣3);
(4).
3、(1)用配方法解方程:.
(2)当岚岚用因式分解法解一元二次方程时,她是这样做的:
解:原方程可以化简为.……………………………………第一步
两边同时除以.得. ………………………………………………第二步
系数化为1,得.………………………………………………………………第三步
①岚岚的解法是不正确的,她从第________步开始出现了错误.
②请完成这个方程的正确解题过程.
4、数学兴趣小组的李舒和林涵两位同学用棋子摆图形探究规律.若两人都按照各自的规律继续摆下去,请回答下列问题:
如图1李舒摆成的图形:
如图2林涵摆成的图形:
(1)填写下表:
图形序号 | 1 | 2 | 3 | 4 |
| n |
李舒所用棋子数 | 11 | 16 | 21 |
|
|
|
林涵所用棋子数 | 1 | 4 | 9 |
|
|
|
(2)是否存在某个图形恰好含有76个棋子?若存在,请求出该图形序号,若不存在,请说明理由;
(3)哪位同学所摆的某个图形含有棋子个数先超过120个?请说明理由.
(4)两位同学所摆图形中,是否存在所需棋子数相同的图形,若存在,请直接写出该图形序号,若不存在,请说明理由.
5、如图,在矩形ABCD中,AB=6cm,BC=3cm,点P沿边AB从点A开始向点B以2cm/s的速度运动,点Q沿边DA从点D开始向点A以1cm/s的速度运动.如果P、Q同时出发,运动时间为t(s)(0≤t≤3).
(1)AP= cm,AQ= cm;
(2)t为何值时,△QAP的面积等于2cm2?
-参考答案-
一、单选题
1、B
【分析】
利用一元二次方程的根的判别式,即可求解.
【详解】
解:A、 ,所以该方程无实数根,故本选项不符合题意;
B、 ,所以该方程有两个相等实数根,故本选项符合题意;
C、 ,所以该方程有两个不相等实数根,故本选项不符合题意;
D、 ,所以该方程有两个不相等实数根,故本选项不符合题意;
故选:B
【点睛】
本题主要考查了一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.
2、A
【分析】
根据题意可直接进行求解.
【详解】
解:由题意可列方程为;
故选A.
【点睛】
本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键.
3、C
【分析】
设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.
【详解】
解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,
由题意得:,
故选C.
【点睛】
本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.
4、A
【分析】
方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.
【详解】
解:x2+4x=1
即
故选A
【点睛】
本题考查了配方法解一元二次方程,掌握配方法是解题的关键.
5、B
【分析】
根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可.
【详解】
解:根据题意将x=0代入方程可得:a2-1=0,
解得:a=1或a=-1,
∵a-1≠0,即a≠1,
∴a=-1,
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.
6、A
【分析】
将n代入方程,然后提公因式化简即可.
【详解】
解:∵是关于x的方程的根,
∴,即,
∵,
∴,即,
故选:A.
【点睛】
本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.
7、D
【分析】
利用因式分解法求出一元二次方程的两根,按斜边是否是两根中的一个,进行分类讨论,通过勾股定理求斜边长,最后即可求出答案.
【详解】
解:,
因式分解得:,解得:,,
情况1:当为斜边的长时,此时斜边长为5,
情况2:当,,都为直角边长时,此时斜边长为,
这个直角三角形的斜边长为5或,
故选:D.
【点睛】
本题主要是考查了因式分解法求解方程,以及勾股定理求边长,在不确定直角边和斜边的情况下,一定要分类讨论,分情况进行求解.
8、A
【分析】
根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.
【详解】
解:∵一元二次方程的两根分别为m,n,
∴,,
∴,
故选:A.
【点睛】
本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.
9、A
【分析】
根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可.
【详解】
解:是方程的根,
,
∴
故选A.
【点睛】
本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.
10、C
【分析】
利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.
【详解】
解:∵m,n是方程的两根,
∴, ,
∴,
∴.
故选:C
【点睛】
本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.
二、填空题
1、2
【分析】
只含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程,根据定义解答.
【详解】
解:由题意得,
解得m=2,
故答案为:2.
【点睛】
此题考查了一元二次方程的定义,熟记定义并应用解决问题是解题的关键.
2、-5
【分析】
先利用配方法把所求的代数式配方,然后代值计算即可.
【详解】
解:∵,
∴
,
故答案为:-5.
【点睛】
本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.
3、2025
【分析】
把代入方程即可求得的值,然后将其整体代入所求的代数式求解即可.
【详解】
把代入方程得:,
.
故答案为:2025.
【点睛】
本题主要考查一元二次方程的解及代数式求值,解题关键是熟练掌握计算法则.
4、40
【分析】
先把一元二次方程化为一般式,然后利用一元二次方程根的判别式直接计算即可解答.
【详解】
解:∵,
∴,
∴,,,
,
故答案为:40.
【点睛】
本题考查一元二次方程根的判别式,熟练掌握该知识点是解题关键.
5、或.
【分析】
由题意将(x+3)(x﹣2)+m=x2+x变形为,进而即可求得一元二次方程x2+x﹣m=0的根.
【详解】
解:∵(x+3)(x﹣2)+m=x2+x,
∴,
∵x2+x﹣m=0,
∴,
解得:或.
故答案为:或.
【点睛】
本题考查求一元二次方程的根,注意将(x+3)(x﹣2)+m=x2+x变形为是解题的关键.
三、解答题
1、(1)80件;(2)40
【分析】
(1)先求得第一周甲乙商品的销售额,设甲商品销售了x件,则乙商品销售了件,根据题意列方程求解即可;
(2)先求得第一周甲乙商品的销售单价,根据题意列方程求解即可.
【详解】
解:(1)第一周甲商品的销售额为(元),
第一周乙商品的销售额为(元).
设甲商品销售了x件,则乙商品销售了件,
依题意,得:,解得:,
经检验,是原方程的解,且符合题意.
答:甲商品销售了80件.
(2)第一周甲商品的销售单价为(元),
第一周乙商品的销售单价为(元).
依题意,得:
整理,得:,
解得:,(不合题意,舍去).
答:a的值为40.
【点睛】
本题考查分式方程及一元二次方程的应用,解题关键是找准等量关系,正确列出方程.
2、(1);(2);(3);(4).
【分析】
(1)方程利用因式分解法求出解即可;
(2)方程利用公式法求出解即可;
(3)方程变形后,利用因式分解法求出解即可;
(4)方程利用公式法求出解即可.
【详解】
解:(1)方程x2﹣4x﹣5=0,
分解因式得:(x-5)(x+1)=0,
所以x-5=0或x+1=0,
解得:x1=5,x2=-1;
(2)方程2x2﹣6x﹣3=0,
a=2,b=-6,c=-3,
∵△=b2-4ac=36+24=60>0,
∴x==,
∴;
(3)方程移项得:(2x-3)2-5(2x-3)=0,
分解因式得:(2x-3)(2x-3-5)=0,
所以2x-3=0或2x-8=0,
解得:;
(4)
a=1,b=,c=10,
∵△=b2-4ac=48-40=8>0,
∴x==,
∴.
【点睛】
本题考查了解一元二次方程-因式分解法,以及公式法,熟练掌握各自的解法是解题的关键.
3、(1),;(2)①二;②,
【详解】
解:(1)配方,得,即.
由此可得.
解得,.
(2)①第二步在两边同时除以时未考虑的情况,故第二步错误.
故答案为:二;
②正确的解答过程如下:
原方程可以化简为.
移项,得.
因式分解,得.
由此可得或.
解得,.
【点睛】
本题考查解一元二次方程,熟练掌握该知识点是解题关键.
4、(1)
图形序号 | 1 | 2 | 3 | 4 |
| n |
李舒所用棋子数 | 11 | 16 | 21 | 26 |
| |
林涵所用棋子数 | 1 | 4 | 9 | 16 |
|
;(2)李舒所摆图形的第14图形恰好含有76个棋子;林涵所摆的图形中没有恰好含有76个棋子的;(3)林涵同学所摆的第11个图形含有棋子个数先超过120个;(4)两位同学所摆图形中,第6个图形所需棋子数相同.
【解析】
【分析】
(1)根据所给图形和表格找到每个同学所摆图形所需棋子个数的规律,并用代数式表示,即可填写表格;
(2)令(1)所总结的两个代数式分别等于76,解出结果是整数的即为恰好含有76个棋子的图形;
(3)令(1)所总结的两个代数式分别等于120,解出结果更小的,就说明那个同学所摆的图形含有棋子个数先超过120个;
(4)令(1)所总结的两个代数式相等,即列出关于n的一元二次方程,解出n即可.
【详解】
(1)根据李舒所用棋子数:
第1图形:,
第2图形:,
第3图形:,
∴第4图形的棋子数为:,
…
第n图形的棋子数为:;
林涵所用棋子数:
第1图形:,
第2图形:,
第3图形:,
∴第4图形的棋子数为:,
…
第n图形的棋子数为:.
故可填表为:
图形序号 | 1 | 2 | 3 | 4 |
| n |
李舒所用棋子数 | 11 | 16 | 21 | 26 |
| |
林涵所用棋子数 | 1 | 4 | 9 | 16 |
|
(2),
解得:,
∴李舒所摆图形的第14图形恰好含有76个棋子;
,
解得:,
∴林涵所摆的图形中没有恰好含有76个棋子的;
(3),
解得:,
∴李舒所摆图形的第23图形开始超过120个;
,
解得:,
∴林涵所摆图形的第11图形开始超过120个;
故林涵同学所摆的第11个图形含有棋子个数先超过120个;
(4),
解得:,(舍)
故:两位同学所摆图形中,第6个图形所需棋子数相同.
【点睛】
本题考查图形类规律探索,一元二次方程的实际应用.根据所给图形和表格找到每个同学所摆图形所需棋子个数的规律,并用代数式表示是解答本题的关键.
5、(1)2t;(3-t);(2)t为1或2.
【分析】
(1)先证明AD=BC=3cm,∠A=90°,再根据题意即可求解;
(2)根据三角形面积公式列出一元二次方程,解方程即可求解.
【详解】
解:(1)∵四边形ABCD为矩形,
∴AD=BC=3cm,∠A=90°,
∴AP=2tcm,AQ=(3-t)cm,
故答案为:2t;(3-t)
(2)由题意得,
整理得,
解得,
答:t为1或2时,△QAP的面积等于2cm2.
【点睛】
本题考查了一元二次方程的应用,根据题意用含t的式子表示出直角三角形两边,列出方程是解题关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步练习题,共16页。试卷主要包含了已知方程的两根分别为m,一元二次方程的二次项系数等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试当堂达标检测题,共17页。试卷主要包含了如图,某学校有一块长35米,方程x2﹣x=0的解是,一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题,共16页。试卷主要包含了方程x2=4x的解是,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。