八年级下册第十六章 一元二次方程综合与测试练习
展开这是一份八年级下册第十六章 一元二次方程综合与测试练习,共17页。试卷主要包含了如图,某学校有一块长35米,下列方程中是一元二次方程的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )
A.x2+130x﹣1400=0 B.x2+65x﹣350=0
C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0
2、一个矩形的长是宽的3倍,若把它的长、宽分别加1后,面积增加了9,求原矩形的长与宽.若设原矩形的宽为,可列方程为( )
A. B. C. D.
3、一元二次方程x2+2x=1的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
4、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )
A. B.
C. D.
5、若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )
A.a≥﹣且a≠0 B.a≤﹣ C.a≥﹣ D.a≤﹣且a≠0
6、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
7、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )
A.x1=0,x2=-3 B.x1=-1,x2=-4
C.x1=0,x2=3, D.x1=2,x2=-1
8、下列方程中是一元二次方程的是( )
A.2x+1=0 B.y2+x=1 C.x2+1=0 D.
9、已知关于x的方程有两个不相等的实数根,则a的值可能为( ).
A.3 B.4 C.5 D.6
10、方程x2﹣x=0的解是( )
A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图1,塔吊是建筑工地上常用的一种起重设备,可以用来搬运货物.如图2,已知一款塔吊的平衡臂ABC部分构成一个直角三角形,且,起重臂AD可以通过拉伸BD进行上下调整.现将起重臂AD从水平位置调整至位置,使货物E到达位置(挂绳DE的长度不变且始终与地面垂直).此时货物E升高了24米,且到塔身AH的距离缩短了16米,测得,则AC的长为_____________米.
2、某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边,若丝绸花边的面积为650cm2,设花边的宽度为xcm.根据题意得方程______.
3、若m是一元二次方程2x2+3x﹣1=0的一个根,则4m2+6m﹣2021=________.
4、江苏省某县去年平均房价为每平方米4000元,连续两年增长后,明年平均房价将达到每平方米5 500 元,设这两年平均房价年平均增长率为x,根据题意,所列方程是_______________________
5、已知关于x的一元二次方程的一个根是2,则k的值是______.
三、解答题(5小题,每小题10分,共计50分)
1、解分式方程:
2、用适当的方法解方程
(1);
(2).
3、已知关于x的一元二次方程有两个实数根,.
(1)求实数m的取值范围;
(2)若,求m的值.
4、解方程:
(1)x2﹣6x﹣4=0;
(2)3x(x+1)=3x+3.
5、已知关于x的一元二次方程x²﹣mx+m﹣1=0有两个实数根x1,x2.
(1)求m的取值范围;
(2)当x12+x22=6x1x2+1时,求m的值.
-参考答案-
一、单选题
1、B
【分析】
先用表示出矩形挂图的长和宽,利用面积公式,即可得到关于的方程.
【详解】
解:由题意可知:挂图的长为,宽为,
,
化简得:x2+65x﹣350=0,
故选:B.
【点睛】
本题主要是考查了一元二次方程的实际应用,熟练根据等式列出对应的方程,是解决该类问题的关键.
2、C
【分析】
分别用表示出长宽增加前后的矩形面积,然后作差即可得到所求方程.
【详解】
解:由题意可知,长宽增加前的矩形面积为:,
长宽增加后的矩形面积为:,
根据已知条件可得方程:,
故选:C.
【点睛】
本题主要是考查了一元二次方程的实际应用,熟练利用表示出对应图形的面积,这是解决与面积相关的应用题的关键.
3、A
【分析】
方程整理后得出x2+2x﹣1=0,求出Δ=8>0,再根据根的判别式的内容得出答案即可.
【详解】
解:x2+2x=1,
整理得,x2+2x﹣1=0,
∵Δ=22﹣4×1×(﹣1)=8>0,
∴方程有两个不相等的实数根,
故选:A.
【点睛】
本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.
4、C
【分析】
设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.
【详解】
解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,
依题意得:.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.
5、A
【分析】
根据一元二次方程的定义和一元二次方程根的判别式求解即可.
【详解】
解:∵关于x的一元二次方程ax2+x﹣1=0有实数根,
∴,
解得:且.
故选A.
【点睛】
本题主要考查一元二次方程根的判别式和一元二次方程的定义,熟练掌握根的判别式和一元二次方程的定义是解题的关键.
6、C
【分析】
设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.
【详解】
解:设该商店销售额平均每月的增长率为x,
依题意得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
∴该商店销售额平均每月的增长率为50%.
故选:C.
【点睛】
本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.
7、D
【分析】
首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.
【详解】
解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,
∴一元二次方程ax2+bx+c=3有一个根为1,
∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,
∴,,
∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,
∴,
∴,
∴或,
解得:.
故选:D.
【点睛】
此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.
8、C
【详解】
解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;
B、含有2个未知数,不是一元二次方程,故本选项不符合题意;
C、是一元二次方程,故本选项符合题意;
D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.
9、A
【分析】
根据方程有两个不相等的实数根,判别式△>0,确定a的取值范围,判断选择即可.
【详解】
∵方程有两个不相等的实数根,
∴判别式△>0,
∴,
∴a<4,
故选A.
【点睛】
本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.
10、D
【分析】
因式分解后求解即可.
【详解】
x2﹣x=0,
x(x-1)=0,
x=0,或x-1=0,
解得x1=0,x2=1,
故选:D
【点睛】
此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
二、填空题
1、7
【分析】
过点B作于点M,由题意易得,则有四边形是矩形,设,则,然后根据勾股定理可得AF的长,进而问他可求解.
【详解】
解:过点B作于点M,如图所示:
由题意得:,
∴四边形是矩形,
∴,
设,则,在中,由勾股定理得:
,解得:,
∴,
设,
∴,
∴,
在中,,
在中,,
∴,整理得:,
解得:;
故答案为7.
【点睛】
本题主要考查勾股定理、矩形的性质与判定及一元二次方程的解法,熟练掌握勾股定理、矩形的性质与判定及一元二次方程的解法是解题的关键.
2、
【分析】
根据题意可以求得长方形工艺品未被丝绸花边覆盖的部分的面积为 cm2,设花边的宽度为xcm,则未被丝绸花边覆盖的部分的长宽分别为: cm,进而根据长方形的面积公式建立方程即可
【详解】
解:设花边的宽度为xcm,根据题意得方程
故答案为:
【点睛】
本题考查了一元二次方程的应用,找到等量关系建立方程是解题的关键.
3、﹣2019
【分析】
根据方程的根的定义,把x=m代入方程求出2m2+3m的值,然后整体代入代数式进行计算即可得解.
【详解】
解:∵m是一元二次方程2x2+3x1=0的一个根,
∴2m2+3m1=0,
整理得,2m2+3m=1,
∴4m2+6m2021=2(2m2+3m)2021=2×12021=2019.
故答案为:﹣2019.
【点睛】
本题考查了一元二次方程的解,利用整体思想求出2m2+3m的值,然后整体代入是解题的关键.
4、4000(1+x)2=5500
【分析】
根据去年及明年的平均房价,列出关于x的一元二次方程即可解题.
【详解】
解:设这两年平均房价年平均增长率为x,根据题意得,
4000(1+x)2=5500
故答案为:4000(1+x)2=5500
【点睛】
本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题关键.
5、-2
【分析】
知道方程的一根,把x=2代入方程中,即可求出未知量k.
【详解】
解:将x=2代入一元二次方程x2-x+k=0,
可得:4-2+k=0,
解得k=-2,
故答案为:-2.
【点睛】
本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.
三、解答题
1、x=4
【分析】
两边都乘以x2-4化为整式方程求解,然后验根即可.
【详解】
解:,
两边都乘以x2-4,得
2(x-2)-4x=-(x2-4),
x2-2x-8=0,
(x+2)(x-4)=0,
x1=-2,x2=4,
检验:当x=-2时,x2-4=0,
当x=4时,x2-4≠0,
∴x=4是原分式方程的根.
【点睛】
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.
2、(1),,(2)
【分析】
用因式分解法解方程即可.
【详解】
解:(1),
,
,
,;
(2),
,
,
.
【点睛】
本题考查了一元二次方程解法,解题关键是熟练运用因式分解法解方程.
3、(1);(2).
【分析】
(1)由题意得到,据此计算解题;
(2)通过根与系数的关系列出与的值,然后结合条件求出m的值.
【详解】
解:(1)因为一元二次方程有两个实数根,
所以
即实数m的取值范围为;
(2),
(舍去)或
【点睛】
本题考查一元二次方程根与系数的关系、根的判别式等知识,是重要考点,掌握相关知识是解题关键,难度一般.
4、(1)x1=+3,x2=-+3(2)x1=-1,x2=1
【分析】
(1)根据配方法即可求解;
(2)根据因式分解法即可求解.
【详解】
(1)x2﹣6x﹣4=0
x2﹣6x+9=13
(x-3)2=13
x-3=±
∴x1=+3,x2=-+3
(2)3x(x+1)=3x+3
3x(x+1)-3(x+1)=0
3(x+1)(x-1)=0
∴x+1=0或x-1=0
∴x1=-1,x2=1.
【点睛】
此题主要考查解一元二次方程,解题的关键是熟知配方法与因式分解法的运用.
5、(1)一切实数;(2)7或1
【分析】
(1)根据判别式的意义得到Δ=(m﹣2)2≥0,然后解不等式即可;
(2)根据根与系数的关系得到得x1+x2=m,x1x2=m﹣1,利用x12+x22=6x1x2+1,得到2﹣2(m﹣1)=6(m﹣1)+1,然后解m的方程可得到满足条件的m的值.
【详解】
解:(1)根据题意得Δ=(﹣m)2﹣4(m﹣1)≥0,
∴(m﹣2)2≥0,
∴m取一切实数;
(2)根据题意得x1+x2=m,x1x2=m﹣1,
∵x12+x22=6x1x2+1,
∴(x1+x2)2﹣2x1x2=6x1x2+1,
即m2﹣2(m﹣1)=6(m﹣1)+1,
解得m=7或m=1,
∴m的值为7或1.
【点睛】
本题考查了根与系数的关系以及根的判别式,解答本题的关键是掌握两根之和与两根之积的表达方式.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试复习练习题,共15页。试卷主要包含了股市规定,已知方程的两根分别为m,若a是方程的一个根,则的值为等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试一课一练,共15页。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。