初中数学第十六章 一元二次方程综合与测试同步达标检测题
展开这是一份初中数学第十六章 一元二次方程综合与测试同步达标检测题,共17页。试卷主要包含了小亮,下列方程是一元二次方程的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用配方法解方程,则方程可变形为( )
A. B. C. D.
2、参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )
A. B.
C. D.
3、下列方程中一定是一元二次方程的是( )
A.x2﹣4=0 B.ax2+bx+c=0 C.x2﹣y+1=0 D.+x﹣1=0
4、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是( )
A.没有实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.无法判断
5、若m是方程x2+x﹣1=0的根,则2m2+2m+2020的值为( )
A.2022 B.2021 C.2020 D.2019
6、小亮、小明、小刚三名同学中,小亮的年龄比小明的年龄小2岁,小刚的年龄比小明的年龄大1岁,并且小亮与小刚的年龄的乘积是130.你知道这三名同学的年龄各是多少岁吗?设小明的年龄为x岁,则可列方程为( )
A. B.
C. D.
7、某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有( )支队伍参赛.
A.4 B.5 C.6 D.7
8、下列方程是一元二次方程的是( )
A. B.
C. D.
9、南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为步,根据题意可以列方程为( )
A. B. C. D.
10、对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:
①当a<0,且b>a+c时,方程一定有实数根;
②若ac<0,则方程有两个不相等的实数根;
③若a-b+c=0,则方程一定有一个根为-1;
④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.
其中正确的有( )
A.①②③ B.①②④ C.②③ D.①②③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,则关于的一元二次方程必有一个根为______.
2、如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为660平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为______________.
3、解一元二次方程x2﹣7x=0的最佳方法是 _____.
4、小华在解一元二次方程x2=6x时,只得出一个根是x=6,则被他漏掉的一个根是x=______.
5、若关于x,y的方程组有唯一解,则k的值是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均年收入20000元,到2019年人均年收入达到28800元.假设该地区居民年人均收入平均增长率都相同.
(1)求该地区居民年人均收入平均增长率;
(2)请你预测该地区2022年人均年收入.
2、解方程:
(1)x2﹣4x﹣1=0;
(2)x2﹣x﹣12=0.
3、某蔬菜交易市场2020年10月份的蔬菜交易量是5000吨,到2020年12月份达到7200吨.
(1)求这两个月平均每月增长的百分率.
(2)按(1)中的增长率,预测2021年1月份的交易量是 吨.
4、已知函数y1=x+1和y2=x2+3x+c(c为常数).
(1)若两个函数图像只有一个公共点,求c的值;
(2)点A在函数y1的图像上,点B在函数y2的图像上,A,B两点的横坐标都为m.若A,B两点的距离为3,直接写出满足条件的m值的个数及其对应的c的取值范围.
5、解方程:.
-参考答案-
一、单选题
1、D
【分析】
根据配方法解一元二次方程步骤变形即可.
【详解】
∵
∴
∴
∴
∴
故选:D.
【点睛】
本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.
2、A
【分析】
设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可.
【详解】
解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:
,
故选:A.
【点睛】
题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.
3、A
【分析】
利用一元二次方程定义进行解答即可.
【详解】
解:A、是一元二次方程,故此选项符合题意;
B、当a=0时,不是一元二次方程,故此选项不合题意;
C、含有两个未知数,不是一元二次方程,故此选项不合题意;
D、未知数次数为1,不是一元二次方程,故此选项不合题意;
故选:A.
【点睛】
此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
4、B
【分析】
判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.
【详解】
解:∵关于x的一元二次方程为ax2+bx+c=0,
∴Δ=b2﹣4ac,
∵ac<0,
∴﹣ac>0,
又∵b2≥0,
∴Δ>0,
∴方程有两个不相等的实数根.
故选B.
【点睛】
本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.
5、A
【分析】
根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可.
【详解】
解:是方程的根,
,
∴
故选A.
【点睛】
本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.
6、B
【分析】
设小明的年龄为x岁,则可用x表示出小亮的年龄和小刚的年龄.再根据小亮与小刚的年龄的乘积是130,即可列出方程.
【详解】
设小明的年龄为x岁,则小亮的年龄为岁,小刚的年龄为岁,
根据题意即可列方程:.
故选:B.
【点睛】
本题考查一元二次方程的实际应用.理解题意,正确找出题干中的数量关系列出等式是解答本题的关键.
7、C
【分析】
由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数1)=30,把相关数值代入计算即可.
【详解】
解:有x个球队参加比赛,
根据题意可列方程为:x(x1)=30,
解得:或(舍去);
∴共有6支队伍参赛;
故选:C
【点睛】
本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.
8、C
【分析】
判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
【详解】
A.有两个未知数,错误;
B.不是整式方程,错误;
C.符合条件;
D.化简以后为,不是二次,错误;
故选:C.
【点睛】
本题考查一元二次方程的定义.根据一元二次方程的定义,一元二次方程有三个特点:
(1)只含有一个未知数;
(2)未知数的最高次数是2;
(3)是整式方程.
9、C
【分析】
设长为x步,则宽为(60-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解.
【详解】
设长为x步,则宽为(60-x)步,
依题意得:x(60-x)=864,
整理得:.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
10、C
【分析】
①令,,,由判别式即可判断;②若,则a、c异号,由判别式即可判断;③令得,即可判断;④取,,来进行判断即可.
【详解】
①由当,,,,方程此时没有实数根,故①错误;
②若,a、c异号,则,方程一定有两个不相等的实数根,所以②正确;
③令得,则方程一定有一个根为;③正确;
④当,,时,有两个不相等的根为,但方程只有一个根为1,故④错误.
故选:C.
【点睛】
本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键.
二、填空题
1、
【分析】
由a﹣b+c=0可得b=a+c,然后将b=a+c带入方程,最后用因式分解法解一元二次方程即可.
【详解】
解:∵a﹣b+c=0,
∴b=a+c,①
把①代入方程ax2+bx+c=0中,
ax2+(a+c)x+c=0,
ax2+ax+cx+c=0,
ax(x+1)+c(x+1)=0,
(x+1)(ax+c)=0,
∴x1=﹣1,x2=﹣(非零实数a、b、c).
故答案是:-1.
【点睛】
本题主要考查了解一元二次方程,灵活运用因式分解法解一元二次方程成为解答本题的关键.
2、(35-2x)(20-x)=660
【分析】
若设小道的宽为x米,则阴影部分可合成长为(35-2x)米,宽为(20-x)米的矩形,利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解
【详解】
解:依题意,得:(35-2x)(20-x)=660.
故答案为:(35-2x)(20-x)=660.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
3、因式分解法
【分析】
将一元二次方程先提公因式然后计算即可.
【详解】
解:一元二次方程,即,
解得:,,
∴应采用因式分解法,
故答案为:因式分解法.
【点睛】
题目主要考查一元二次方程的因式分解法,熟练掌握因式分解法是解题关键.
4、0
【分析】
由因式分解法解一元二次方程步骤因式分解即可求出.
【详解】
原式为x2=6x
移项得x2-6x=0
化积为x(x-6)=0
转化得x=0,x-6=0
解得x=0,x=6
故答案为:0.
【点睛】
因式分解法解一元二次方程的一般步骤:移项→将方程的右边化为零;化积→把方程的左边分解为两个一次因式的积; 转化→令每个因式分别为零,转化成两个一元一次方程;求解→解这两个一元一次方程,它们的解就是原方程的解.
5、-1或3或-1
【分析】
把①代入②,得到关于x的一元二次方程,根据判别式为0时方程有两个相等的实根,列出方程求出k即可.
【详解】
解:
把①代入②得,kx-1=x2+x,
整理得,x2+(1-k)x+1=0
使方程有唯一解,判别式为0,
(1-k)2-4=0,
解得k1=-1,k2=3.
故答案为:-1或3
【点睛】
本题考查的是二元二次方程的解的判断,步骤是把方程组通过代入法化为一元二次方程,然后根据一元二次方程根的判别式进行判断.
三、解答题
1、(1)20%;(2)49766.4元
【分析】
(1)设该地区居民年人均收入平均增长率为x,则2019年人均年收入可以表示为: 再列方程解方程即可;
(2)2022年人均年收入可以表示为28800×(1+0.2)3,再计算即可.
【详解】
解:(1)设该地区居民年人均收入平均增长率为x,
20000(1+x)2=28800,
解得,x1=0.2,x2=﹣2.2(舍去),
∴该地区居民年人均收入平均增长率为20%
(2)28800×(1+0.2)3=49766.4(元)
答:该地区2022年人均年收入是49766.4元.
【点睛】
本题考查的是一元二次方程的应用,掌握“利用一元二次方程解决增长率问题”是解本题的关键.
2、(1),;(2),.
【分析】
(1)利用配方法求解即可;
(2)利用因式分解法求解即可.
【详解】
解:(1)∵,
∴,
∴,
∴,
∴,
∴,;
(2)∵,
∴,
∴,.
【点睛】
本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.
3、(1)20%;(2)8640.
【分析】
(1)设这两个月平均每月增长的百分率为x,利用2020年12月份的蔬菜交易量=2020年10月份的蔬菜交易量×(1+这两个月平均每月增长的百分率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)利用2021年1月份的蔬菜交易量=2020年12月份的蔬菜交易量×(1+这两个月平均每月增长的百分率),即可求出结论.
【详解】
解:(1)设这两个月平均每月增长的百分率为x,
依题意得:5000(1+x)2=7200,
化简得25x2+50x-9=0
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:这两个月平均每月增长的百分率为20%.
(2)7200×(1+20%)=8640(吨).
故答案为:8640.
【点睛】
本题考查了二次函数相关的增长率问题,有关增长率问题的等量关系:①原产量+增产量=现在的产量;②增产量=原产量×增长率;③现在的产量=原产量×(1+增长率).④若连续n个月增长率相同则有:a(1+增长率)n=b.对于连续变化的问题,都是以前一个时间段为基础,平均增长(降低)率也是如此,如二月份的产量是在一月份的基础上变化的,三月份的产量是在二月份的基础上变化的.
4、(1)c=2;(2)当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个
【分析】
(1)只需求出y1=y2时对应一元二次方程有两个相等的实数根的c值即可;
(2)根据题意,AB=|m2+2m+c-1|=3,分m2+2m+c-1>0和m2+2m+c-1<0两种情况,利用一元二次方程根的判别式与根的关系求解即可.
【详解】
解:(1)根据题意,若两个函数图像只有一个公共点,
则方程x2+3x+c=x+1有两个相等的实数根,
∴△=b2-4ac=22-4(c-1)=0,
∴c=2;
(2)由题意,A(m,m+1),B(m,m2+3m+c)
∴AB=|m2+3m+c-m-1|=|m2+2m+c-1|=3,
①当m2+2m+c-1>0时,m2+2m+c-1=3,即m2+2m+c-4=0,
△=22-4(c-4)=20-4c,令△=20-4c=0,解得:c=5,
∴当c<5时,△>0,方程有两个不相等的实数根,即m有2个;
当c=5时,△=0,方程有两个相等的实数根,即m有1个;
当c>5时,△<0,方程无实数根,即m有0个;
②当m2+2m+c-1<0时,m2+2m+c-1=-3,即m2+2m+c+2=0,
△=22-4(c+2)=-4c-4,令△=-4c-4=0,解得:c=-1,
∴当c<-1时,△>0,方程有两个不相等的实数根,即m有2个;
当c=-1时,△=0,方程有两个相等的实数根,即m有1个;
当c>-1时,△<0,方程无实数根,即m有0个;
综上,当c>5时,m有0个;
当c=5时,m有1个;
当-1<c<5时,m有2个;
当c=-1时,m有3个;
当c<-1时,m有4个.
【点睛】
本题考查函数图象上点的坐标特征、一元二次方程根的判别式与根的关系、坐标与图形,解答的关键是熟练掌握一元二次方程根的判别式与根的关系:△>0,方程有两个不相等的实数根,△=0,方程有两个相等的实数根,△<0,方程无实数根.
5、x1=1,x2=3
【分析】
利用因式分解法,令两个一次因式都等于0,进而得出结果.
【详解】
解:
或
解得或
或
【点睛】
本题考察了一元二次方程的求解.解题的关键与难点在于对多项式进行因式分解.
相关试卷
这是一份2020-2021学年第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共16页。试卷主要包含了一元二次方程x2=-2x的解是,一元二次方程的两个根是,如图,某学校有一块长35米,下列事件为必然事件的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试习题,共14页。