2021学年第十六章 一元二次方程综合与测试复习练习题
展开京改版八年级数学下册第十六章一元二次方程专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、方程x2﹣x=0的解是( )
A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=1
2、下列事件为必然事件的是( )
A.抛掷一枚硬币,正面向上
B.在一个装有5只红球的袋子中摸出一个白球
C.方程x2﹣2x=0有两个不相等的实数根
D.如果|a|=|b|,那么a=b
3、关于的一元二次方程的一个根是3,则的值是( )
A.3 B. C.9 D.
4、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )
A.5 B.3 C.-3 D.-4
5、若是关于的方程的一个根,则的值是( )
A. B. C.1 D.2
6、南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为步,根据题意可以列方程为( )
A. B. C. D.
7、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )
A. B. C. D.
8、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )
A. B.12 C. D.或
9、方程的解是( )
A.6 B.0 C.0或6 D.-6或0
10、已知关于x的方程有两个不相等的实数根,则a的值可能为( ).
A.3 B.4 C.5 D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于的一元二次方程(a,b,c为常数,)的解为,则方程的解为__________.
2、 “降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.
3、关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是_____.
4、设x1,x2是方程x2-3x-1=0的两个根,则x1+x2=_____,x1x2=______.
5、设x1,x2是关于x的一元二次方程x2﹣mx+2m=0的两个根,当x1为1时则x1x2的值是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在一块长为30m、宽为20m的矩形地面上,要修建两横两竖的道路(横竖道路各与矩形的一条边平行),横、竖道路的宽度比为2:3,剩余部分种上草坪,如果要使草坪的面积是地面面积的四分之一,应如何设计道路的宽度?
2、已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(﹣9,3).
(1)求直线l1,l2的表达式;
(2)点C为直线OB上一动点(点C不与点O,B重合),作CDy轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.
①设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);
②若矩形CDEF的面积为48,请直接写出此时点C的坐标.
3、解方程:
(1)(配方法)
(2)(公式法)
4、解方程:
(1)(x﹣5)2=(2﹣3x)2;
(2)x2﹣10x+16=0;
(3)2x2﹣x﹣2=0.
5、随着元旦的到来,某超市准备在元旦期间推出甲、乙两种商品,甲型的售价是乙型的.
(1)元旦第一周该商家两种商品的总销售额为3600元,乙商品的销售额是甲商品的2倍,销售量比甲商品多40件,求甲商品销售了多少件?
(2)为增加销量,该商家第二周决定将乙商品的售价下调%,甲商品的售价保持不变,结果与第一周相比,乙商品的销量增加了%,甲商品的销量增加了a%,最终第二周的销售额比第一周的销售额增加了%,求a的值.
-参考答案-
一、单选题
1、D
【分析】
因式分解后求解即可.
【详解】
x2﹣x=0,
x(x-1)=0,
x=0,或x-1=0,
解得x1=0,x2=1,
故选:D
【点睛】
此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
2、C
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可
【详解】
解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;
B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;
C、∵,∴方程x2﹣2x=0有两个不相等的实数根,是必然事件,符合题意;
D、如果|a|=|b|,那么a=b或a=-b,不是必然事件,不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
3、C
【分析】
把x=3代入已知方程,列出关于m的方程,通过解方程可以求得m的值.
【详解】
解:关于的一元二次方程的一个根是3
m=9
故选:C
【点睛】
本题考查了一元二次方程的解的定义,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
4、A
【分析】
根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.
【详解】
解:∵一元二次方程的两根分别为m,n,
∴,,
∴,
故选:A.
【点睛】
本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.
5、A
【分析】
将n代入方程,然后提公因式化简即可.
【详解】
解:∵是关于x的方程的根,
∴,即,
∵,
∴,即,
故选:A.
【点睛】
本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.
6、C
【分析】
设长为x步,则宽为(60-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解.
【详解】
设长为x步,则宽为(60-x)步,
依题意得:x(60-x)=864,
整理得:.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
7、B
【分析】
先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值.
【详解】
解:根据题意,∵,
∴,
∴,
∴
;
∵,
解得:,,
∵,
∴,
∴;
故选:B
【点睛】
本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.
8、D
【分析】
先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可.
【详解】
∵,
∴(x-2)(x-5)=0,
∴
∴另一边长为=或=,
∴矩形的面积为2×=或5×=5,
故选D.
【点睛】
本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键.
9、C
【分析】
根据一元二次方程的解法可直接进行求解.
【详解】
解:
,
解得:;
故选C.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
10、A
【分析】
根据方程有两个不相等的实数根,判别式△>0,确定a的取值范围,判断选择即可.
【详解】
∵方程有两个不相等的实数根,
∴判别式△>0,
∴,
∴a<4,
故选A.
【点睛】
本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.
二、填空题
1、##
【分析】
根据一元二次方程解的定义可得令,进而即可求得,即方程的解
【详解】
解:∵关于的一元二次方程(a,b,c为常数,)的解为,
∴方程中,令
则,即或
解得
即的解为
故答案为:
【点睛】
本题考查了一元二次方程解的定义,掌握解的定义,换元是解题的关键.
2、
【分析】
先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.
【详解】
解:
则或或
解得:
故答案为:
【点睛】
本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.
3、且
【详解】
利用判别式,根据一元二次方程的定义,列出不等式即可解决问题;
【分析】
解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,
∴△≥0且k≠0,
∴9+4k≥0,
∴k≥﹣,且k≠0,
故答案为k≥﹣且k≠0.
【点睛】
本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.
4、3 -1
【分析】
利用一元二次方程根与系数的关系,即可求解.
【详解】
解:∵x1,x2是方程x2-3x-1=0的两个根,
∴ .
故答案为:3,-1
【点睛】
本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.
5、-2
【分析】
把代入,得,所以方程为,即可求解.
【详解】
解:把代入,得:
解得:,
∴方程为,
∴x1x2==-2.
故答案为:-2
【点睛】
本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.
三、解答题
1、横着的道路的宽为,则竖着的道路宽为.
【分析】
设横着的道路的宽为,则竖着的道路宽为,然后根据要使草坪的面积是地面面积的四分之一,列出方程求解即可.
【详解】
解:设横着的道路的宽为,则竖着的道路宽为,
由题意得:,
∴,
∴,
∴
解得或,
∵当时,,不符合题意,
∴,
∴横着的道路的宽为,则竖着的道路宽为.
【点睛】
本题主要考查了一元二次方程的应用,解题的关键在于正确理解题意,列出方程求解.
2、(1)y=﹣x,y=x+12;(2)①(﹣3n,﹣3n+12);②(3,﹣1)或C(﹣12,4)
【分析】
(1)从图中看以看出l1是正比例函数,l2是一次函数,根据点A、B的坐标,用待定系数法即可求得l1、l2的解析式;
(2)①已知点C的纵坐标及点C在直线l1上,求得点C的横坐标;进而知道了点D的横坐标,点D在直线l2上,易得点D的坐标;
②根据点C与点D坐标,求出CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,利用矩形的面积=长×宽,列出关于n的方程,解方程即可.
【详解】
解:(1)设直线l1的表达式为y=k1x,
∵过点B(﹣9,3),
∴﹣9k1=3,
解得:k1=﹣,
∴直线l1的表达式为y=﹣x;
设直线l2的表达式为y=k2x+b,
∵过点A (0,12),B(﹣9,3),
∴,
解得:,
∴直线l2的表达式y=x+12;
(2)①∵点C在直线l1上,且点C的纵坐标为n,
∴n=﹣x,
解得:x=﹣3n,
∴点C的坐标为(﹣3n,n),
∵CD∥y轴,
∴点D的横坐标为﹣3n,
∵点D在直线l2上,
∴y=﹣3n+12,
∴D(﹣3n,﹣3n+12);
②∵C(﹣3n,n),D(﹣3n,﹣3n+12),
∴CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,
∵矩形CDEF的面积为60,
∴S矩形CDEF=CF•CD=|3n|×|﹣4n+12|=48,
解得n=﹣1或n=﹣4,
当n=﹣1时,﹣3n=3,故C(3,﹣1),
当n=4时,﹣3n=1﹣12,故C(﹣12,4).
综上所述,点C的坐标为:(3,﹣1)或C(﹣12,4).
【点睛】
本题考查待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程,掌握待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程是解题关键.
3、(1);(2)
【分析】
(1)利用配方法,首先将常数项移项,再配方,方程两边同时加上一次项系数一半的平方求出即可;
(2)利用公式法直接代入求出即可.
【详解】
(1)
(2)
∴
∴
【点睛】
本题考查了解一元二次方程,熟练掌握公式法、配方法的解题步骤是解题的关键.
4、(1)x1=,x2=﹣;(2)x1=2,x2=8;(3)x1=,x2=﹣.
【分析】
(1)直接利用因式分解的方法解一元二次方程即可;
(2)直接利用因式分解的方法解一元二次方程即可;
(3)直接利用因式分解的方法解一元二次方程即可.
【详解】
解:(1)∵(x﹣5)2=(2﹣3x)2,
∴,
∴,
∴
解得:x1=,x2=;
(2)∵x2﹣10x+16=0,
∴(x﹣2)(x﹣8)=0,
∴x﹣2=0或x﹣8=0,
解得x1=2,x2=8;
(3)∵,
∴,
∴,
∴,.
【点睛】
本题主要考查了解一元二次方程 ,解题的关键在于能够熟练掌握解一元二次方程的方法.
5、(1)80件;(2)40
【分析】
(1)先求得第一周甲乙商品的销售额,设甲商品销售了x件,则乙商品销售了件,根据题意列方程求解即可;
(2)先求得第一周甲乙商品的销售单价,根据题意列方程求解即可.
【详解】
解:(1)第一周甲商品的销售额为(元),
第一周乙商品的销售额为(元).
设甲商品销售了x件,则乙商品销售了件,
依题意,得:,解得:,
经检验,是原方程的解,且符合题意.
答:甲商品销售了80件.
(2)第一周甲商品的销售单价为(元),
第一周乙商品的销售单价为(元).
依题意,得:
整理,得:,
解得:,(不合题意,舍去).
答:a的值为40.
【点睛】
本题考查分式方程及一元二次方程的应用,解题关键是找准等量关系,正确列出方程.
2020-2021学年第十六章 一元二次方程综合与测试一课一练: 这是一份2020-2021学年第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题: 这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题,共17页。试卷主要包含了小亮,下列方程中是一元二次方程的是,一元二次方程的根的情况是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共16页。试卷主要包含了一元二次方程x2=-2x的解是,一元二次方程的两个根是,如图,某学校有一块长35米,下列事件为必然事件的是等内容,欢迎下载使用。