2021学年第十六章 一元二次方程综合与测试课后复习题
展开
这是一份2021学年第十六章 一元二次方程综合与测试课后复习题,共17页。试卷主要包含了一元二次方程x2﹣x=0的解是,一元二次方程x2=-2x的解是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解方程,则方程可变形为( )A. B. C. D.2、已知是一元二次方程的一个根,则代数式的值为( )A.2020 B.2021 C.2022 D.20233、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )A.7 B.11 C.15 D.194、解一元二次方程x2-6x-4=0,配方后正确的是( )A.(x+3)2=13 B.(x-3)2=5 C.(x-3)2=4 D.(x-3)2=135、若关于x的一元二次方程有一个根是,则a的值为( )A. B.0 C.1 D.或16、一元二次方程x2﹣x=0的解是( )A.x1=0,x2=1 B.x1=x2=1 C.x1=0,x2=﹣1 D.x1=1,x2=﹣17、将方程化为一元二次方程的一般形式,正确的是( ).A. B. C. D.8、一元二次方程x2=-2x的解是( )A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-29、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A.128(1 - x2)= 88 B.88(1 + x)2 = 128C.128(1 - 2x)= 88 D.128(1 - x)2 = 8810、若m是方程x2+x﹣1=0的根,则2m2+2m+2020的值为( )A.2022 B.2021 C.2020 D.2019第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x的一元二次方程kx2﹣4x﹣2=0有两个不相等的实数根,则k的取值范围是 _____.2、已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是 _____.3、如图,一块长5m、宽4m的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.设配色条纹的宽度为xm,根据题意,列方程为 _____.
4、关于x的方程的一个根是,则m=________.5、若m是一元二次方程2x2+3x﹣1=0的一个根,则4m2+6m﹣2021=________.三、解答题(5小题,每小题10分,共计50分)1、近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员.网友看到苏爷爷的故事,纷纷订购表示支持.已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”).(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元.求每箱中果和大果的售价分别是多少元?(2)在(1)的条件下,正常情况平均每周可销售30箱大果.但为了减少库存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%.求每箱大果的售价应该降低多少元?2、计算:(1)x(x﹣2)=x﹣2(2)x2﹣6x﹣1=0.3、用适当的方法解方程.(1)(2)4、计算:(1)3x2+3=7x;(用配方法解方程)(2)4y(3﹣y)=(y﹣3)2.5、解方程:(1) 2x2-4x-3=0.(2)3x(x-1)=2-2x. -参考答案-一、单选题1、D【分析】根据配方法解一元二次方程步骤变形即可.【详解】∵∴∴∴∴故选:D.【点睛】本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.2、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可.【详解】解:把代入一元二次方程得,,,故选:B.【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、D【分析】先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项.【详解】解:,解得:,∴这个三角形的两边的长为6和11,∴第三边长x的范围为5<x<17;故选D.【点睛】本题主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键.4、D【分析】根据配方法即可求出答案.【详解】解:∵x2﹣6x﹣4=0,∴x2﹣6x=4,∴x2﹣6x+9=13,∴(x﹣3)2=13,故选D.【点睛】本题考查了配方法解方程,注意配方时先把常数项移到右边,然后把二次项系数化为1,最后等号两面同时加上一次项系数一半的平方.5、A【分析】把代入方程得出,再求出方程的解即可.【详解】∵关于x的一元二次方程有一个根是∴解得∵一元二次方程∴∴∴故选:A.【点睛】此题主要考查了一元二次方程的解,注意二次项系数不能为零.6、A【分析】方程左边含有公因式x,可先提取公因式,然后再分解因式求解.【详解】解:∵x2-x=0,∴x(x-1)=0,则x=0或x-1=0,解得:x1=0,x2=1.故选A.【点睛】本题考查一元二次方程的解法-因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.7、B【分析】根据一元二次方程的概念,判断即可,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:化为一元二次方程的一般形式为故选B【点睛】本题考查了一元二次方程的概念,掌握一元二次方程的一般形式是解题的关键.8、D【分析】先移项、然后再利用因式分解法解方程即可.【详解】解 :x2=-2xx2+2x=0x(x+2)=0,x=0或x+2=0,所以x1=0,x2=-2.故选:D.【点睛】本题考查了解一元二次方程−因式分解法,把解一元二次方程的问题转化为解一元一次方程的问题成为解答本题的关键.9、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:128(1-x)2=88.
故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、A【分析】根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可.【详解】解:是方程的根,,∴故选A.【点睛】本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题1、k>-2且k≠0k≠0且k>-2【分析】根据关于x的一元二次方程kx2-4x-2=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.注意:二次项系数不等于零.【详解】解:∵关于x的一元二次方程kx2-4x-2=0有两个不相等的实数根,∴Δ=(-4)2-4×(-2)k>0,解得k>-2,∵k≠0,∴k的取值范围k>-2且k≠0,故答案是:k>-2且k≠0.【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.2、且【分析】利用一元二次方程的定义和根的判别式的意义得到k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,解得k≥﹣2且k≠﹣1.故答案为:k≥﹣2且k≠﹣1.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式等知识,是重要考点,难度较小,掌握相关知识是解题关键.3、2x2-9x+4=0【分析】设条纹的宽度为x米,根据“配色条纹所占面积=整个地毯面积的”的等量关系列出方程并整理即可.【详解】解:设条纹的宽度为x米.依题意得:2x×5+2x×4−4x2=×5×4整理得:2x2-9x+4=0.故填2x2-9x+4=0.【点睛】本题主要考查了列一元二次方程,审清题意、找到等量关系成为解答本题的关键.4、【分析】将代入方程即可求解.【详解】解:关于x的方程的一个根是,解得故答案为:【点睛】本题考查了一元二次方程的解定义,掌握方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.5、﹣2019【分析】根据方程的根的定义,把x=m代入方程求出2m2+3m的值,然后整体代入代数式进行计算即可得解.【详解】解:∵m是一元二次方程2x2+3x1=0的一个根,∴2m2+3m1=0,整理得,2m2+3m=1,∴4m2+6m2021=2(2m2+3m)2021=2×12021=2019.故答案为:﹣2019.【点睛】本题考查了一元二次方程的解,利用整体思想求出2m2+3m的值,然后整体代入是解题的关键.三、解答题1、(1)每箱中果的售价为36元,每箱大果的售价为44元;(2)每箱大果的售价应该降低4元.【分析】(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据“2箱中果,1箱大果,花了116元; 1箱中果,2箱大果,花了124元”列出二元一次方程组求解即可;(2)根据“每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%”列出方程和不等式求解即可.【详解】解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据题意得 解得, 所以,每箱中果的售价为36元,每箱大果的售价为44元;(2)设每箱大果的售价应该降低m元,根据题意得, 解①得,, 解②得, ∴ 所以,每箱大果的售价应该降低4元【点睛】本题本题主要考查了二元一次方程组的应用、一元一次不等式的应用以及一元二次方程的应用,正确找出等量关系是解答本题的关键.2、(1)x1=2,x2=1;(2)x1=3+,x2=3﹣【分析】(1)利用因式分解的方法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【详解】解:(1)∵,∴,∴,∴,;(2)∵,∴,∴,∴,∴,∴,.【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.3、(1),;(2)【分析】(1)提取公因式(x-2),利用因式分解法求解即可求得答案;(2)利用因式分解法求解即可求得答案.【详解】解:(1) ∴, (2) ∴【点睛】此题考查了一元二次方程的解法.注意选择适宜的解题方法是解此题的关键.4、(1),;(2),【分析】(1)先移项,再方程两边都除以3,再根据完全平方公式配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可.【详解】解:(1)3x2+3=7x,移项,得3x2﹣7x=﹣3,除以3,得x2﹣ x=﹣1,配方,得x2﹣x+()2=﹣1+()2,即(x﹣)2=,开方,得x﹣=,解得:x1=,x2=;(2)4y(3﹣y)=(y﹣3)2,移项,得﹣4y(y﹣3)﹣(y﹣3)2=0,(y﹣3)(﹣4y﹣y+3)=0,y﹣3=0或﹣4y﹣y+3=0,解得:y1=3,.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并根据方程的特征选用合适的方法是解题的关键.5、(1)x1=1+,x2=1-;(2)x1=1,【分析】(1)根据公式法解一元二次方程即可;(2)根据因式分解的方法解一元二次方程【详解】解:(1)2x2-4x-3=0a=2,b=-4,c=-3,△=16+24=40>0,,∴x1=1+,x2=1-(2)3x(x-1)+2(x-1)=0,(x-1)(3x+2)=0, x-1=0或3x+2=0, 所以x1=1,【点睛】本题考查了解一元二次方程,掌握解一元二次方程的解法是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共15页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试综合训练题,共16页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试测试题,共16页。试卷主要包含了一元二次方程的解为,若a是方程的一个根,则的值为,下列事件为必然事件的是等内容,欢迎下载使用。