初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题
展开京改版八年级数学下册第十六章一元二次方程定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )
A. B.
C. D.
2、一元二次方程2x2 - 1 = 6x化成一般形式后,常数项是 - 1,一次项系数是( )
A.- 2 B.- 6 C.2 D.6
3、已知方程的两根分别为m、n,则的值为( )
A.1 B. C.2021 D.
4、方程x2﹣x=0的解是( )
A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=1
5、方程的解是( )
A.6 B.0 C.0或6 D.-6或0
6、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
7、若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为( )
A.﹣16 B.﹣13 C.﹣10 D.﹣8
8、用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是( )
A.(x﹣5)2=4 B.(x+5)2=4 C.(x﹣5)2=121 D.(x+5)2=121
9、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )
A. B.
C. D.
10、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、关于的一元二次方程的一个根是,则方程的另一根是_______.
2、一元二次方程3x2=3﹣2x的根的判别式的值为 _____.
3、已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是 _____.
4、若x0是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式Δ=b2﹣4ac与平方式M=(2ax0+b)2的大小比较△_______M(填>,<,=).
5、下列各数:-2,-1,0,2,3,是一元二次方程x²+3x+2=0的根的是_________.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:2x2 - 4x - 1 = 0
2、在实数范围内定义一种运算“*”,其运算法则为.如:.根据这个法则,
(1)计算:________;
(2)判断是否为一元二次方程,并求解.
(3)判断方程的根是否为,,并说明理由.
3、用配方法解方程3﹣6x+1=0.
4、如图,是边长为的等边三角形,点P,Q分别从顶点A,B同时出发,点P沿射线运动,点Q沿折线运动,且它们的速度都为.当点Q到达点A时,点P随之停止运动连接,,设点P的运动时间为.
(1)当点Q在线段上运动时,的长为_______(),的长为_______()(用含t的式子表示);
(2)当与的一条边垂直时,求t的值;
(3)在运动过程中,当是等腰三角形时,直接写出t的值.
5、解方程:
(1)2(x﹣1)2﹣16=0;
(2)x2+5x+7=3x+11.
-参考答案-
一、单选题
1、C
【分析】
根据等量关系第10月的营业额×(1+x)2=第12月的营业额列方程即可.
【详解】
解:根据题意,得:,
故选:C.
【点睛】
本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.
2、B
【分析】
先把一元二次方程化为一般形式,即可得出一次项系数.
【详解】
∵一元二次方程化为一般形式,
∴一次项系数是.
故选:B.
【点睛】
本题考查一元二次方程的相关概念,一元二次方程一般形式:,其中为二次项系数,为一次项系数,为常数项.
3、B
【分析】
由题意得mn=1,m2﹣2021m+1=0,将代数式变形后再代入求解即可.
【详解】
∵方程x2﹣2021x+1=0的两根分别为m,n,
∴mn=1,m2﹣2021m+1=0,
∴m2﹣2021m=﹣1,
∴m2﹣=﹣1,
故选:B.
【点睛】
本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=,熟练掌握代数式的求值技巧是解题的关键.
4、D
【分析】
因式分解后求解即可.
【详解】
x2﹣x=0,
x(x-1)=0,
x=0,或x-1=0,
解得x1=0,x2=1,
故选:D
【点睛】
此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
5、C
【分析】
根据一元二次方程的解法可直接进行求解.
【详解】
解:
,
解得:;
故选C.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
6、C
【分析】
设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.
【详解】
解:设该商店销售额平均每月的增长率为x,
依题意得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
∴该商店销售额平均每月的增长率为50%.
故选:C.
【点睛】
本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.
7、则此三角形的周长是1
故选:C.
【点睛】
本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键.
5.A
【分析】
将m代入2x2﹣3x﹣1=0可得2m2﹣3m﹣1=0,再化简所求代数为﹣6m2+9m﹣13=-3(2m2﹣3m)﹣13,即可求解.
【详解】
解:∵m是方程2x2﹣3x﹣1=0的一个根,
∴2m2﹣3m﹣1=0,
∴2m2﹣3m=1,
∴﹣6m2+9m﹣13=﹣3(2m2﹣3m)﹣13=﹣3×1﹣13=﹣16,
故选:A.
【点睛】
本题考查一元二次方程的解,熟练掌握一元二次方程的解与一元二次方程的关系,灵活变形所求代数式是解题的关键.
8、A
【分析】
利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解.
【详解】
解:x2﹣10x+21=0,
移项得: ,
方程两边同时加上25,得: ,
即 .
故选:A
【点睛】
本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键.
9、C
【分析】
根据增长率的意义,列式即可.
【详解】
设这个增长率为,
根据题意,得,
故选C.
【点睛】
本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.
10、A
【分析】
根据题意可直接进行求解.
【详解】
解:由题意可列方程为;
故选A.
【点睛】
本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键.
二、填空题
1、
【分析】
设另一根为,根据一元二次方程根与系数的关系,可得 ,由,解一元一次方程即可求得方程的另一根
【详解】
解:∵关于的一元二次方程的一个根是,设另一根为,
∴
故答案为:
【点睛】
本题考查了一元二次方程根与系数的关系,掌握是解题的关键.
2、40
【分析】
先把一元二次方程化为一般式,然后利用一元二次方程根的判别式直接计算即可解答.
【详解】
解:∵,
∴,
∴,,,
,
故答案为:40.
【点睛】
本题考查一元二次方程根的判别式,熟练掌握该知识点是解题关键.
3、且
【分析】
利用一元二次方程的定义和根的判别式的意义得到k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,然后求出两个不等式的公共部分即可.
【详解】
解:根据题意得k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,
解得k≥﹣2且k≠﹣1.
故答案为:k≥﹣2且k≠﹣1.
【点睛】
本题考查一元二次方程根的判别式、解一元一次不等式等知识,是重要考点,难度较小,掌握相关知识是解题关键.
4、=
【分析】
首先把展开,然后把x0代入方程ax2+bx+c=0中得,再代入前面的展开式中即可得到△与M的关系.
【详解】
解:把x0代入方程中得,
∵,
∴ ,
∴Δ=M.
故答案为:=.
【点睛】
本题是一元二次方程的解与根的判别式的结合试题,考查了根的判别式,既利用了方程的根的定义,也利用了完全平方公式.
5、-1和-2
【分析】
直接用因式分解的方法求出一元二次方程的根即可得到答案.
【详解】
解:∵,
∴,
解得,,
∴-2,-1,0,2,3,中是方程的根的是-2,-1,
故答案为:-1和-2.
【点睛】
本题主要考查了解一元二次方程和一元二次方程根的定义,熟知解一元二次方程的方法是解题的关键.
三、解答题
1、,.
【分析】
此题采用公式法即可求出一元二次方程的解.
【详解】
解:由题意可知:,,
∴
∴
∴,.
【点睛】
本题主要是考查了公式法求解一元二次方程,熟练记忆一元二次方程的求根公式,是求解该题的关键.
2、(1)
(2)是一元二次方程,
(3)不是,理由见解析
【分析】
(1)根据直接代入求值即可;
(2)根据新定义,将方程化简,进而解一元二次方程即可;
(3)方法同(2)解一元二次方程,进而判断方程的根即可
(1)
故答案为:
(2)
是一元二次方程
解得:
(3)
的根不是,
,则,即
【点睛】
本题考查了新定义运算,代数式求值,解一元二次方程,一元二次方程的定义,掌握解一元二次方程的方法是解题的关键.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.
3、=1+,=1﹣
【分析】
方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.
【详解】
解:方程移项得:3﹣6x=﹣1,
即﹣2x=﹣,
配方得:=,
开方得:x﹣1=±,
解得 =1+,=1﹣.
【点睛】
本题考查了公式法解一元二次方程,熟练掌握求根公式是解题的关键.
4、(1);;(2)当或或时,PQ与的一条边垂直;(3)当或时,为等腰三角形.
【分析】
(1)根据点的位置及运动速度可直接得出;
(2)根据题意分三种情况讨论:①当时,;②当时,;③当时,;作出图形,分别应用直角三角形中角的特殊性质求解即可得;
(3)根据题意,分四种情况进行讨论:①当点Q在BC边上时,时;②当点Q在BC边上时,时;③当点Q在BC边上时,时;④当点Q在AC边上时,只讨论情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.
【详解】
解:(1)点Q从点B出发,速度为,点P从点A出发,速度为,
∴,,
∴,
故答案为:;;
(2)根据题意分三种情况讨论:
①如图所示:当时,,
∵三角形ABC为等边三角形,
∴
∴
∴,
由(1)可得:,
解得:;
②如图所示:当时,,
∵
∴
∴,
由(1)可得:,
解得:;
③如图所示:当时,,
∵
∴
∴,
由(1)可得:,
解得:;
综上可得:当或或时,PQ与的一条边垂直;
(3)根据题意,分情况讨论:
①当点Q在BC边上时,时,
如图所示:过点Q作,
∵
∴
∴,
∴,
,,
∴
∵,
∴,
解得:或(舍去);
②当点Q在BC边上时,时,
如图所示:过点P作,
∵
∴
∴,
∴,
,,
∴
∵,
∴,
解得:(舍去);
③当点Q在BC边上时,时,如图所示:
由图可得:,,
,
∴这种情况不成立;
④当点Q在AC边上时,只讨论情况,如图所示:
过点Q作,过点C作,
∵,为等边三角形,
∴,,
∴,
,
∴,
∴,
∴,
∴,
∵,,
∴,
∵,
∴,
解得:或(舍去),
综上可得:当或时,为等腰三角形.
【点睛】
题目主要考查三角形与动点问题,包括勾股定理的应用,含角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.
5、(1)x1=1+2,x2=1﹣2;(2)x1=﹣1+,x2=﹣1﹣.
【分析】
(1)利用直接开平方法求出方程的解即可;
(2)利用配方法求出方程的解即可.
【详解】
解:(1)整理,得2(x﹣1)2=16,
(x﹣1)2=8,
∴x﹣1=,
∴x1=1+2,x2=1﹣2;
(2)整理,得x2+2x=4,
配方,得x2+2x+1=4+1,即(x+1)2=5,
解得:
【点睛】
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
数学北京课改版第十六章 一元二次方程综合与测试习题: 这是一份数学北京课改版第十六章 一元二次方程综合与测试习题,共14页。试卷主要包含了方程x2﹣8x=5的根的情况是,方程x2=4x的解是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共17页。试卷主要包含了用配方法解方程,则方程可变形为,股市规定等内容,欢迎下载使用。
数学八年级下册第十六章 一元二次方程综合与测试精练: 这是一份数学八年级下册第十六章 一元二次方程综合与测试精练,共15页。试卷主要包含了下列所给方程中,没有实数根的是等内容,欢迎下载使用。