北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题
展开这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共15页。
京改版八年级数学下册第十六章一元二次方程必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为x m,依题意,可列方程为( )
A. B. C. D.
2、方程x2﹣x=0的解是( )
A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=1
3、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是( )
A. B.
C. D.
4、下列方程中一定是一元二次方程的是( )
A.x2﹣4=0 B.ax2+bx+c=0 C.x2﹣y+1=0 D.+x﹣1=0
5、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )
A. B.
C. D.
6、已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是( )
A.﹣2 B.2 C.﹣1 D.1
7、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )
A.7 B.11 C.15 D.19
8、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )
A.﹣2 B.2 C.﹣4 D.4
9、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )
A.x1=0,x2=-3 B.x1=-1,x2=-4
C.x1=0,x2=3, D.x1=2,x2=-1
10、一元二次方程根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是一元二次方程的一根,则方程的另一个根为______.
2、下面是用配方法解关于的一元二次方程的具体过程,
解:第一步:
第二步:
第三步:
第四步:,
以下四条语句与上面四步对应:“①移项:方程左边为二次项和一次项,右边为常数项;②求解:用直接开方法解一元二次方程;③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;④二次项系数化1,方程两边都除以二次项系数”,则第一步,第二步,第三步,第四步应对应的语句分别是________.
3、已知实数a是一元二次方程x2﹣2016x+1=0的根,求代数式a2﹣2015a﹣的值为_____.
4、已知关于x方程的一个根是1,则m的值等于______.
5、某班学生去参加义务劳动,其中一组到一果园去摘梨子, 第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,…以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为 _______
三、解答题(5小题,每小题10分,共计50分)
1、中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均年收入20000元,到2019年人均年收入达到28800元.假设该地区居民年人均收入平均增长率都相同.
(1)求该地区居民年人均收入平均增长率;
(2)请你预测该地区2022年人均年收入.
2、已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.
3、解一元二次方程:
(1)
(2)
4、解分式方程:
5、解下列方程:
(1)x2﹣2x+1=25.
(2)3x(x - 1)= 2(x - 1).
-参考答案-
一、单选题
1、A
【分析】
由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.
【详解】
解:设较长一段的长为x m,则较短一段的长为(2-x )m,
由题意得:.
故选:A.
【点睛】
本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键.
2、D
【分析】
因式分解后求解即可.
【详解】
x2﹣x=0,
x(x-1)=0,
x=0,或x-1=0,
解得x1=0,x2=1,
故选:D
【点睛】
此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
3、A
【分析】
股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.
【详解】
设x为平均每天下跌的百分率,
则:(1+10%)•(1-x)2=1;
故选:A.
【点睛】
考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.
4、A
【分析】
利用一元二次方程定义进行解答即可.
【详解】
解:A、是一元二次方程,故此选项符合题意;
B、当a=0时,不是一元二次方程,故此选项不合题意;
C、含有两个未知数,不是一元二次方程,故此选项不合题意;
D、未知数次数为1,不是一元二次方程,故此选项不合题意;
故选:A.
【点睛】
此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
5、A
【分析】
根据题意可直接进行求解.
【详解】
解:由题意可列方程为;
故选A.
【点睛】
本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键.
6、D
【分析】
用根与系数的关系可用k表示出已知等式,可求得k的值.
【详解】
解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,
∴x1+x2=k,x1x2=k﹣3,
∵x12+x22=5,
∴(x1+x2)2﹣2x1x2=5,
∴k2﹣2(k﹣3)=5,
整理得出:k2﹣2k+1=0,
解得:k1=k2=1,
故选:D.
【点睛】
本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.
7、D
【分析】
先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项.
【详解】
解:
,
解得:,
∴这个三角形的两边的长为6和11,
∴第三边长x的范围为5<x<17;
故选D.
【点睛】
本题主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键.
8、B
【分析】
根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.
【详解】
解:∵一元二次方程x2+k﹣3=0有一个根为1,
∴将代入得,,解得:.
故选:B.
【点睛】
此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.
9、D
【分析】
首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.
【详解】
解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,
∴一元二次方程ax2+bx+c=3有一个根为1,
∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,
∴,,
∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,
∴,
∴,
∴或,
解得:.
故选:D.
【点睛】
此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.
10、A
【分析】
计算出判别式的值,根据判别式的值即可判断方程的根的情况.
【详解】
∵,,,
∴,
∴方程有有两个不相等的实数根.
故选:A
【点睛】
本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.
二、填空题
1、
【分析】
直接根据根与系数的关系即可求出另一个根.
【详解】
设方程另一个根为,则,解得
故答案为: .
【点睛】
本题考查了根与系数的关系和一元二次方程的解,熟记是解题的关键.也可以把代入方程求出k的值,再解方程求出另一而根.
2、④①③②
【分析】
根据配方法的步骤:二次项系数化为1,移项,配方,求解,进行求解即可.
【详解】
解:根据配方法的步骤可知:第一步为:④二次项系数化1,方程两边都除以二次项系数;
第二步为:①移项:方程左边为二次项和一次项,右边为常数项;
第三步为:③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;
第四步为:②求解:用直接开方法解一元二次方程;
故答案为:④①③②.
【点睛】
本题主要考查了配方法解一元二次方程,熟知配方法的步骤是解题的关键.
3、
【分析】
利用方程解的定义得到,然后利用整体代入的方法计算代数式的值.
【详解】
解:是方程的根,
,
,
原式
.
故答案是:.
【点睛】
本题主要考查了一元二次方程的解的定义,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
4、2
【分析】
把方程的根代入原方程,求解即可.
【详解】
解:因为关于x方程的一个根是1,
所以,,解得,,
故答案为:2.
【点睛】
本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解.
5、11
【分析】
设这组学生的人数为 人,根据题意列出方程,解出即可.
【详解】
解:设这组学生的人数为 人,根据题意得:
,
即
解得: .
故答案为:11
【点睛】
本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.
三、解答题
1、(1)20%;(2)49766.4元
【分析】
(1)设该地区居民年人均收入平均增长率为x,则2019年人均年收入可以表示为: 再列方程解方程即可;
(2)2022年人均年收入可以表示为28800×(1+0.2)3,再计算即可.
【详解】
解:(1)设该地区居民年人均收入平均增长率为x,
20000(1+x)2=28800,
解得,x1=0.2,x2=﹣2.2(舍去),
∴该地区居民年人均收入平均增长率为20%
(2)28800×(1+0.2)3=49766.4(元)
答:该地区2022年人均年收入是49766.4元.
【点睛】
本题考查的是一元二次方程的应用,掌握“利用一元二次方程解决增长率问题”是解本题的关键.
2、m的最大整数值为0
【分析】
根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.
【详解】
解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,
∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,
解得:m≤且m≠1,
则m的最大整数值为0.
【点睛】
本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键.
3、(1),;(2),
【分析】
(1)根据直接开平方法解一元二次方程;
(2)根据公式法解一元二次方程先确定;再求,然后代入公式即可.
【详解】
解:(1)开方得:,
解得:,;
(2),
∵,
∴,
∴,
∴,.
【点睛】
本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.
4、x=4
【分析】
两边都乘以x2-4化为整式方程求解,然后验根即可.
【详解】
解:,
两边都乘以x2-4,得
2(x-2)-4x=-(x2-4),
x2-2x-8=0,
(x+2)(x-4)=0,
x1=-2,x2=4,
检验:当x=-2时,x2-4=0,
当x=4时,x2-4≠0,
∴x=4是原分式方程的根.
【点睛】
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.
5、(1),;(2),
【分析】
(1)利用直接开方法解方程即可;
(2)利用提取公因式法解方程即可.
【详解】
解:(1),
,
∴,
;
(2)3x(x-1)=2(x-1),
3x(x-1)-2(x-1)=0,
(x-1)(3x-2)=0,
∴x-1=0或3x-2=0,
∴x1=1,.
【点睛】
本题主要考查了解一元二次方程的方法,准确计算是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共15页。试卷主要包含了关于x的一元二次方程,不解方程,判别方程的根的情况是,方程x2﹣x=0的解是,一元二次方程的解是.等内容,欢迎下载使用。
这是一份初中第十六章 一元二次方程综合与测试精练,共15页。试卷主要包含了关于x的一元二次方程等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试课时练习,共19页。试卷主要包含了若a是方程的一个根,则的值为,方程x2﹣x=0的解是等内容,欢迎下载使用。