初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测,共18页。试卷主要包含了下列方程是一元二次方程的是,不解方程,判别方程的根的情况是,已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解方程x2-4x-3=0时,配方后的方程为( )A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=7 D.(x-2)2=72、若一元二次方程有一个根为1,则下列等式成立的是( )A. B. C. D.3、若a是方程的一个根,则的值为( )A.2020 B. C.2022 D.4、若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是( )A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠05、下列方程是一元二次方程的是( )A. B.C. D.6、方程2x2-3x=2的一次项系数和常数项分别是( )A.3和2 B.-3和2 C.3和-2 D.-3和-27、不解方程,判别方程的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定8、关于x的方程有两个不相等的实数根,则n的取值范围是( )A.n< B.n ≤ C.n> D.n>9、已知关于x的一元二次方程x2﹣(2m+3)x+m2=0有两根α,β.若=1,则m的值为( )A.3 B.﹣1 C.3或﹣1 D.10、下表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为( ) x﹣2.1﹣2.2﹣2.3﹣2.4y﹣1.39﹣0.76﹣0.110.56A.x≈﹣2.15 B.x≈﹣2.21 C.x≈﹣2.32 D.x≈﹣2.41第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于x的一元二次方程的两实数根,,满足,则m的值是______.2、如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,D是边AB上的一点,将△BCD沿直线CD翻折,使点B落在点B1的位置,若B1D⊥BC,则BD的长度为 _____.3、若关于x,y的方程组有唯一解,则k的值是 _____.4、设x1,x2是关于x的一元二次方程x2﹣mx+2m=0的两个根,当x1为1时则x1x2的值是________.5、若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,那么m=_____.三、解答题(5小题,每小题10分,共计50分)1、阅读与思考配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和.巧妙的运用“配方法”能对一些多项式进行因式分解.例如: (1)解决问题:运用配方法将下列多项式进行因式分解①;②(2)深入研究:说明多项式的值总是一个正数?(3)拓展运用:已知a、b、c分别是的三边,且,试判断的形状,并说明理由.2、解方程:3、解方程:(1)(2)4、如图,在一块长、宽的矩形地面内,修筑一横两竖三条道路,横、竖道路的宽度相同,余下的地面铺草坪,要使草坪面积达到,求道路的宽.5、某蔬菜交易市场2020年10月份的蔬菜交易量是5000吨,到2020年12月份达到7200吨.(1)求这两个月平均每月增长的百分率.(2)按(1)中的增长率,预测2021年1月份的交易量是 吨. -参考答案-一、单选题1、D【分析】根据配方法转化为的形式,问题得解.【详解】解:x2-4x-3=0,移项得,配方得,∴.故选:D【点睛】本题考查了配方法解一元二次方程,熟知配方法的步骤并准确配方(在二次项系数为1时,方程两边同时加上一次项系数一半的平方)是解题的关键.2、D【分析】将代入方程即可得出答案.【详解】解:由题意,将代入方程得:,故选:D.【点睛】本题考查了一元二次方程的根,熟记一元二次方程的根的定义(使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根)是解题关键.3、C【分析】先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.【详解】解:是关于的方程的一个根,,,,.故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.4、B【分析】根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(-4)2-4 k×(-2)≥0,然后求出两不等式组的公共部分,两种情况合并即可.【详解】解:根据题意得:①当时,方程是一元一次方程,此时﹣4x﹣2=0,方程有实数解;②当时,此方程是一元二次方程,可得k≠0且Δ=(-4)2-4 k×(-2)≥0,解得k≥-2且k≠0.综上,当时,关于x的方程kx2﹣4x﹣2=0有实数根,故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.5、C【分析】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.【详解】A.有两个未知数,错误;B.不是整式方程,错误;C.符合条件;D.化简以后为,不是二次,错误;故选:C.【点睛】本题考查一元二次方程的定义.根据一元二次方程的定义,一元二次方程有三个特点:
(1)只含有一个未知数;
(2)未知数的最高次数是2;
(3)是整式方程.6、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.【详解】解:一次项系数为:-3,常数项为:-2,故选D.【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.7、A【分析】利用根的判别式进行求解并判断即可.【详解】解:原方程中,,,,,原方程有两个不相等的实数根故选:A.【点睛】熟练掌握根的判别式是解答此题的关键,当>0有两不相等实数根,当=0有两相等实数根,当<0没有实数根.8、A【分析】利用判别式的意义得到△=>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)²﹣4n>0,解得n< .故选:A.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.9、A【分析】先利用根的判别式得到m≥,再根据根与系数的关系得α+β=2m+3,αβ=m2,则2m+3=m2,然后解关于m的方程,最后利用m的范围确定m的值.【详解】解:根据题意得Δ=(2m+3)2﹣4m2≥0,解得m≥,根据根与系数的关系得α+β=2m+3,αβ=m2,∵=1,∴α+β=αβ,即2m+3=m2,整理得m2﹣2m﹣3=0,解得m1=3,m2=﹣1,∵m≥,∴m的值为3.故选:A.【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,是解答此题的关键.10、C【分析】根据表可得,方程2x2﹣2x﹣10=0的一个解应在﹣2.3与﹣2.4之间,再由y的值可得,它的根近似的看作是﹣2.3.【详解】∵当x=﹣2.3时,y=﹣0.11,当x=﹣2.4时,y=0.56,则方程的根﹣2.3<x<﹣2.4,∵|﹣0.11|<|0.56|,∴方程2x2﹣2x﹣10=0的一个近似解为x≈﹣2.32.故选:C.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是看y值的变化.二、填空题1、2【分析】先根据根的判别式求得m的取值范围,然后根据一元二次方程根与系数的关系得到x1x2=m2−m=2,进而求得m=2或m=−1,故可得解.【详解】解:由题意得Δ=(2m)2−4(m2−m)≥0,∴m≥0,∵关于x的一元二次方程的两实数根,,则x1x2=m2−m=2,∴m2−m−2=0,解得m=2或m=−1(舍去),故答案为:2.【点睛】本题考查的是解一元二次方程和一元二次方程根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1x2=.2、【详解】延长B1D交BC于E,由B1D⊥BC,根据含角直角三角形和勾股定理的性质,推导得DE=BD,BE=BD,设BD=x,在Rt△B1CE中根据轴对称、勾股定理的性质,建立方程计算即可解得答案.【解答】延长B1D交BC于E,如图:∵B1D⊥BC,∴∠BED=∠B1EC=90°,∵∠B=30°,∴DE=BD,∴BE==BD,设BD=x,∵将△BCD沿直线CD翻折,使点B落在点B1的位置,∴B1D=x,∵BC=3,∴CE=3﹣x,B1C=BC=3,在Rt△B1CE中,B1E2+CE2=B1C2,∴(x+x)2+(3﹣x)2=32∴ ∴x=0(舍去)或x= ∴BD=故答案为:.【点睛】本题考查了勾股定理、一元二次方程、轴对称、含角直角三角形的知识;解题的关键是熟练掌握勾股定理;轴对称、含角直角三角形、一元二次方程的性质,从而完成求解.3、-1或3或-1【分析】把①代入②,得到关于x的一元二次方程,根据判别式为0时方程有两个相等的实根,列出方程求出k即可.【详解】解: 把①代入②得,kx-1=x2+x,整理得,x2+(1-k)x+1=0使方程有唯一解,判别式为0,(1-k)2-4=0,解得k1=-1,k2=3.故答案为:-1或3【点睛】本题考查的是二元二次方程的解的判断,步骤是把方程组通过代入法化为一元二次方程,然后根据一元二次方程根的判别式进行判断.4、-2【分析】把代入,得,所以方程为,即可求解.【详解】解:把代入,得: 解得:,∴方程为,∴x1x2==-2.故答案为:-2【点睛】本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.5、1【分析】由题意根据判别式的意义得到Δ=(﹣2)2﹣4×1×m=0,然后求解关于m的方程即可.【详解】解:根据题意得Δ=(﹣2)2﹣4×1×m=0,解得m=1.故答案为:1.【点睛】本题考查根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.三、解答题1、(1)①;②;(2)见解析;(3)等边三角形,理由见解析【分析】(1)仿照例子运用配方法进行因式分解即可;(2)利用配方法和非负数的性质进行说明即可;(3)展开后利用分组分解法因式分解后利用非负数的性质确定三角形的三边的关系即可.【详解】解:(1)①.②(2)∵∴∴多项式的值总是一个正数.(3)为等边三角形.理由如下:∵∴∴∴,∴∴为等边三角形.【点睛】本题考查了因式分解的应用,解题的关键是仔细阅读材料理解配方的方法.2、,【分析】整理成一般式后,利用配方法求解可得.【详解】.,配方,得:,开平方,得:,或,解得,所以,原方程的根为:,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3、(1);(2)【分析】(1)根据公式法解一元二次方程即可;(2)根据因式分解法解一元二次方程即可【详解】解:(1)(2)即或【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的解法是解题的关键.4、道路的宽为2m【分析】设道路的宽为xm,根据图形可以把草坪面积看做是一个长为m,宽为m的长方形面积,由此建立方程求解即可.【详解】解:设道路的宽为xm,由题意得:,∴,∴,∴,解得或(舍去),∴道路的宽为2m.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解.5、(1)20%;(2)8640.【分析】(1)设这两个月平均每月增长的百分率为x,利用2020年12月份的蔬菜交易量=2020年10月份的蔬菜交易量×(1+这两个月平均每月增长的百分率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用2021年1月份的蔬菜交易量=2020年12月份的蔬菜交易量×(1+这两个月平均每月增长的百分率),即可求出结论.【详解】解:(1)设这两个月平均每月增长的百分率为x,依题意得:5000(1+x)2=7200,化简得25x2+50x-9=0解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两个月平均每月增长的百分率为20%.(2)7200×(1+20%)=8640(吨).故答案为:8640.【点睛】本题考查了二次函数相关的增长率问题,有关增长率问题的等量关系:①原产量+增产量=现在的产量;②增产量=原产量×增长率;③现在的产量=原产量×(1+增长率).④若连续n个月增长率相同则有:a(1+增长率)n=b.对于连续变化的问题,都是以前一个时间段为基础,平均增长(降低)率也是如此,如二月份的产量是在一月份的基础上变化的,三月份的产量是在二月份的基础上变化的.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共19页。试卷主要包含了方程(x-1)2 = 0的根是,下列命题中,逆命题不正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试精练,共16页。试卷主要包含了下列事件为必然事件的是,方程的解是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试测试题,共15页。试卷主要包含了一元二次方程的二次项系数,一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。