初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题,共17页。试卷主要包含了如图,某学校有一块长35米,小亮,一元二次方程的解是.等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.42、已知是一元二次方程的一个根,则代数式的值为( )A.2020 B.2021 C.2022 D.20233、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )A. B.C. D.4、若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为( )A.﹣16 B.﹣13 C.﹣10 D.﹣85、若关于x的一元二次方程有一个根是,则a的值为( )A. B.0 C.1 D.或16、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.7、小亮、小明、小刚三名同学中,小亮的年龄比小明的年龄小2岁,小刚的年龄比小明的年龄大1岁,并且小亮与小刚的年龄的乘积是130.你知道这三名同学的年龄各是多少岁吗?设小明的年龄为x岁,则可列方程为( )A. B.C. D.8、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )A.﹣2 B.2 C.﹣4 D.49、一元二次方程的解是( ).A.5 B.-2 C.-5或2 D.5或-210、用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是( )A.(x﹣5)2=4 B.(x+5)2=4 C.(x﹣5)2=121 D.(x+5)2=121第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,那么m=_____.2、代数式的最小值是_______.3、一元二次方程的二次项系数、一次项系数及常数项之和为 ______.4、已知中,,,,则的面积是________.5、将化为一般形式为________.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)x2﹣6x﹣4=0;(2)3x(x+1)=3x+3.2、解方程:(1)x2+8x-2=0; (2)2(2x+3)2-(2x+3)-1=0.3、解分式方程:4、如图,在∆ABC中,∠B=90°,AB=5cm,BC=7cm.动点P、Q分别从点A,B同时出发,点P以1cm/s的速度向点B移动,点Q以2cm/s的速度向点C移动.(不考虑起始位置,且点P,Q不与点A,B重合)(1)P、Q两点出发后第几秒时,∆PBQ的面积为4cm2?(2)P、Q两点出发后第几秒时,PQ的长度为5cm;(3)∆PBQ的面积能否为7cm2?说明理由.5、用配方法解方程3﹣6x+1=0. -参考答案-一、单选题1、D【分析】先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.【详解】解: ,,,故甲出现错误; 即 或 故乙出现了错误;而丙解方程时,移项没有改变符号,丁出现了计算错误;所以出现错误的人数是4人,故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.2、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可.【详解】解:把代入一元二次方程得,,,故选:B.【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C.【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.4、则此三角形的周长是1故选:C.【点睛】本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键.5.A【分析】将m代入2x2﹣3x﹣1=0可得2m2﹣3m﹣1=0,再化简所求代数为﹣6m2+9m﹣13=-3(2m2﹣3m)﹣13,即可求解.【详解】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴﹣6m2+9m﹣13=﹣3(2m2﹣3m)﹣13=﹣3×1﹣13=﹣16,故选:A.【点睛】本题考查一元二次方程的解,熟练掌握一元二次方程的解与一元二次方程的关系,灵活变形所求代数式是解题的关键.5、A【分析】把代入方程得出,再求出方程的解即可.【详解】∵关于x的一元二次方程有一个根是∴解得∵一元二次方程∴∴∴故选:A.【点睛】此题主要考查了一元二次方程的解,注意二次项系数不能为零.6、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.7、B【分析】设小明的年龄为x岁,则可用x表示出小亮的年龄和小刚的年龄.再根据小亮与小刚的年龄的乘积是130,即可列出方程.【详解】设小明的年龄为x岁,则小亮的年龄为岁,小刚的年龄为岁,根据题意即可列方程:.故选:B.【点睛】本题考查一元二次方程的实际应用.理解题意,正确找出题干中的数量关系列出等式是解答本题的关键.8、B【分析】根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.【详解】解:∵一元二次方程x2+k﹣3=0有一个根为1,∴将代入得,,解得:.故选:B.【点睛】此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.9、D【分析】直接把原方程化为两个一次方程或,再解一次方程即可.【详解】解: 或 解得: 故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“因式分解法解一元二次方程的步骤”是解本题的关键.10、A【分析】利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解.【详解】解:x2﹣10x+21=0,移项得: ,方程两边同时加上25,得: ,即 .故选:A【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键.二、填空题1、1【分析】由题意根据判别式的意义得到Δ=(﹣2)2﹣4×1×m=0,然后求解关于m的方程即可.【详解】解:根据题意得Δ=(﹣2)2﹣4×1×m=0,解得m=1.故答案为:1.【点睛】本题考查根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.2、【分析】利用配方法得到:.利用非负数的性质作答.【详解】解:因为≥0,所以当x=1时,代数式的最小值是,故答案是:.【点睛】本题主要考查了配方法的应用,非负数的性质.配方法的理论依据是公式a2±2ab+b2=(a±b)2.3、6
【分析】确定二次项系数,一次项系数,常数项以后即可求解.【详解】根据题意可得,一元二次方程的二次项系数为1,一次项系数为4,常数项为1;∴和为.故答案为:6.【点睛】本题考查了一元二次方程的一般形式,利用二次项系数、一次项系数、常数项之和算出算式是解题关键.4、或【分析】如图所示,过点C作CE⊥AB于E,先根据含30度角的直角三角形的性质和勾股定理求出,设,则,,由,得到,由此求解即可.【详解】解:如图所示,过点C作CE⊥AB于E,∴∠CEB=∠CEA=90°,∵∠ABC=60°,∴∠BCE=30°,∴BC=2BE,∴,设,则,,∵,∴,解得或,∴或,∴或,故答案为:或.【点睛】本题主要考查了勾股定理和含30度角的直角三角形的性质,解一元二次方程,解题的关键在于能够熟练掌握含30度角的直角三角形的性质.5、【分析】移项,将方程右边化为0【详解】解:化为一般形式为故答案为:.【点睛】本题考查一元二次方程的定义,属于基础题,一元二次方程的一般式:.三、解答题1、(1)x1=+3,x2=-+3(2)x1=-1,x2=1【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2﹣6x﹣4=0x2﹣6x+9=13(x-3)2=13x-3=±∴x1=+3,x2=-+3(2)3x(x+1)=3x+33x(x+1)-3(x+1)=03(x+1)(x-1)=0∴x+1=0或x-1=0∴x1=-1,x2=1.【点睛】此题主要考查解一元二次方程,解题的关键是熟知配方法与因式分解法的运用.2、(1)x1=-4+3,x2=-4-3;(2)x1=-1,x2=.【分析】(1)通过移项配方,求出方程的解即可;
(2)分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:(1)x2+8x-2=0,移项得:x2+8x=2,配方得:x2+8x+16=2+16,即 (x+4)2=18,∴x1=-4+3,x2=-4-3;(2)2(2x+3)2-(2x+3)-1=0因式分解得:[(2x+3)-1][2(2x+3)+1]=0,即:(2x+2)(4x+7)=0,∴x1=-1,x2=.【点睛】本题考查了解一元二次方程,掌握因式分解法以及配方法解方程是解题的关键.3、x=4【分析】两边都乘以x2-4化为整式方程求解,然后验根即可.【详解】解:,两边都乘以x2-4,得2(x-2)-4x=-(x2-4),x2-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,检验:当x=-2时,x2-4=0,当x=4时,x2-4≠0,∴x=4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.4、(1)1秒后,△PBQ的面积等于4cm2;(2)2秒后,PQ的长度等于5cm;(3)△PBQ的面积不能等于7cm2.理由见解析【分析】(1)根据题意表示出BP、BQ的长,再根据三角形的面积公式列方程即可;(2)根据题意表示出BP、BQ的长,再根据勾股定理列方程即可;(3)根据三角形的面积公式,列出方程,再利用判别式,即可求解.【详解】解:根据题意,知BP=AB-AP=5-t,BQ=2t.(1)设t秒后,△PBQ的面积等于4cm2,根据三角形的面积公式,得PB•BQ=4,t(5-t)=4,t2-5t+4=0,解得t=1秒或t=4秒(舍去).故1秒后,△PBQ的面积等于4cm2;(2)设t秒后,PQ的长度等于5cm,根据勾股定理,得PQ2=BP2+BQ2=(5-t)2+(2t)2=25,5t2-10t=0,∵t≠0,∴t=2.故2秒后,PQ的长度等于5cm;(3)根据三角形的面积公式,得PB•BQ=7,t(5-t)=7,t2-5t+7=0,△=(-5)2-4×1×7=-3<0.故△PBQ的面积不能等于7cm2.【点睛】本题考查了一元二次方程的应用,此题要能够正确找到点所经过的路程,熟练运用勾股定理和直角三角形的面积公式列方程求解.5、=1+,=1﹣【分析】方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】解:方程移项得:3﹣6x=﹣1,即﹣2x=﹣,配方得:=,开方得:x﹣1=±,解得 =1+,=1﹣.【点睛】本题考查了公式法解一元二次方程,熟练掌握求根公式是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题,共16页。试卷主要包含了下列方程中是一元二次方程的是,方程(x-1)2 = 0的根是,一元二次方程的根的情况是,一元二次方程x2=-2x的解是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题,共16页。试卷主要包含了不解方程,判别方程的根的情况是,若a是方程的一个根,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题,共16页。试卷主要包含了把方程化成.,一元二次方程根的情况是,方程x2=4x的解是等内容,欢迎下载使用。