初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时训练
展开京改版八年级数学下册第十六章一元二次方程定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知m,n是一元二次方程的两个实数根,则的值为( ).
A.4 B.3 C. D.
2、已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2=4的根,则此三角形的周长为( )
A.17 B.11 C.15 D.11或15
3、方程的解是( )
A.6 B.0 C.0或6 D.-6或0
4、某中学组织九年级学生篮球比赛,以班为单位,每两班之间都比赛一场,总共安排15场比赛,则共有多少个班级参赛( )
A.6 B.5 C.4 D.3
5、下列方程中,是关于x的一元二次方程是( )
A. B. C. D.
6、关于的一元二次方程的一个根是3,则的值是( )
A.3 B. C.9 D.
7、将方程化为一元二次方程的一般形式,正确的是( ).
A. B. C. D.
8、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为( )
A. B.
C. D.
9、关于x的方程有两个不相等的实数根,则n的取值范围是( )
A.n< B.n ≤ C.n> D.n>
10、用配方法解方程x2+2x=1,变形后的结果正确的是( )
A.(x+1)2=-1 B.(x+1)2=0 C.(x+1)2=1 D.(x+1)2=2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.
2、下面是用配方法解关于的一元二次方程的具体过程,
解:第一步:
第二步:
第三步:
第四步:,
以下四条语句与上面四步对应:“①移项:方程左边为二次项和一次项,右边为常数项;②求解:用直接开方法解一元二次方程;③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;④二次项系数化1,方程两边都除以二次项系数”,则第一步,第二步,第三步,第四步应对应的语句分别是________.
3、若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,那么m=_____.
4、已知关于的一元二次方程(a,b,c为常数,)的解为,则方程的解为__________.
5、已知的算术平方根为a,则关于x的方程的根为____________.
三、解答题(5小题,每小题10分,共计50分)
1、某市尊师重教,市委、市政府非常重视教育,将教育纳入质量强市考核,近几年全市公共预算教育支出逐年增长.已知2019年教育支出约80亿元,2021年教育支出约为96.8亿元,求2019年到2021年教育支出的年平均增长率.
2、某地区2019年投入教育经费2500万元,2021年投入教育经费3025万元.求2019年至2021年该地区投入教育经费的年平均增长率.
3、如图,在一块长、宽的矩形地面内,修筑一横两竖三条道路,横、竖道路的宽度相同,余下的地面铺草坪,要使草坪面积达到,求道路的宽.
4、解方程:
5、求证:无论m取任何实数,关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0恒有实数根.
-参考答案-
一、单选题
1、A
【分析】
根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解.
【详解】
解:∵m、n是一元二次方程的两个实数根,
∴m+n=4.
故选:A.
【点睛】
本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.
2、C
【分析】
先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.
【详解】
解:(x﹣3)2=4,
x﹣3=±2,
解得x1=5,x2=1.
若x=5,则三角形的三边分别为4,5,6,其周长为4+5+6=15;
若x=1时,6﹣4=2>1,不能构成三角形,
3、C
【分析】
根据一元二次方程的解法可直接进行求解.
【详解】
解:
,
解得:;
故选C.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
4、A
【分析】
设共有x个班级参赛,根据第一个球队和其他球队打场球,每个球队都打场球,并且都重复一次,根据计划安排15场比赛即可列出方程求解.
【详解】
解:设共有x个班级参赛,根据题意得:
,
解得:,(不合题意,舍去),
则共有6个班级参赛,
故选:A.
【点睛】
本题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.
5、C
【分析】
根据只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程选择即可.
【详解】
A.当a=0时,是一元一次方程,该选项不符合题意;
B.分母上有未知数,是分式方程,该选项不符合题意;
C.是关于x的一元二次方程,该选项符合题意;
D.经整理后为,是一元一次方程,该选项不符合题意.
故选择C.
【点睛】
本题考查识别一元二次方程,理解一元二次方程的定义是解答本题的关键.
6、C
【分析】
把x=3代入已知方程,列出关于m的方程,通过解方程可以求得m的值.
【详解】
解:关于的一元二次方程的一个根是3
m=9
故选:C
【点睛】
本题考查了一元二次方程的解的定义,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
7、B
【分析】
根据一元二次方程的概念,判断即可,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【详解】
解:化为一元二次方程的一般形式为
故选B
【点睛】
本题考查了一元二次方程的概念,掌握一元二次方程的一般形式是解题的关键.
8、B
【分析】
根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可
【详解】
解:设道路宽为xm,则根据题意可列方程为
故选B
【点睛】
本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
9、A
【分析】
利用判别式的意义得到△=>0,然后解不等式即可.
【详解】
解:
根据题意得△=(﹣3)²﹣4n>0,
解得n< .
故选:A.
【点睛】
此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.
10、D
【分析】
方程两边同时加上一次项系数一半的平方即可得到答案.
【详解】
解:∵x2+2x=1,
∴x2+2x+1=1+1,
∴(x+1)2=2,
故选D.
【点睛】
本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.
二、填空题
1、14
【分析】
根据第一天患病的人数为1+1×传播的人数,第二天患病的人数为第一天患病的人数×传播的人数,再根据等量关系:第一天患病的人数+第二天患病的人数=225,列出方程求解即可.
【详解】
解:设每天一人传染了x人,则依题意得
1+x+(1+x)×x=225,
(1+x)2=225,
∵1+x>0,
∴1+x=15,
x=14.
答:每天一人传染了14人.
【点睛】
此题考查了一元二次方程的应用,读懂题意,得到两天患病人数的等量关系是解决本题的关键;本题的等量关系是:第一天患病的人数+第二天患病的人数=225.
2、④①③②
【分析】
根据配方法的步骤:二次项系数化为1,移项,配方,求解,进行求解即可.
【详解】
解:根据配方法的步骤可知:第一步为:④二次项系数化1,方程两边都除以二次项系数;
第二步为:①移项:方程左边为二次项和一次项,右边为常数项;
第三步为:③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;
第四步为:②求解:用直接开方法解一元二次方程;
故答案为:④①③②.
【点睛】
本题主要考查了配方法解一元二次方程,熟知配方法的步骤是解题的关键.
3、1
【分析】
由题意根据判别式的意义得到Δ=(﹣2)2﹣4×1×m=0,然后求解关于m的方程即可.
【详解】
解:根据题意得Δ=(﹣2)2﹣4×1×m=0,
解得m=1.
故答案为:1.
【点睛】
本题考查根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
4、##
【分析】
根据一元二次方程解的定义可得令,进而即可求得,即方程的解
【详解】
解:∵关于的一元二次方程(a,b,c为常数,)的解为,
∴方程中,令
则,即或
解得
即的解为
故答案为:
【点睛】
本题考查了一元二次方程解的定义,掌握解的定义,换元是解题的关键.
5、x1=5,x2=1.
【分析】
先根据算术平方根求出a的值,在代入解一元二次方程即可.
【详解】
解:∵=9,
9的算术平方根是3,
∴a=3,
∴关于x的方程(x-a)2=4变为(x-3)2=4
∴x-3=±2
解得x1=5,x2=1.
故答案为:x1=5,x2=1.
【点睛】
本题考查了算术平方根的求法和一元二次方程的解法,做题的关键是求出a的值.
三、解答题
1、2019年到2021年教育支出的年平均增长率为10%.
【分析】
设2019年到2021年教育支出的年平均增长率为x,则2020年教育支出为, 2021年教育支出为,再由2021年教育支出约为96.8亿元,列方程,再解方程可得答案.
【详解】
解:设2019年到2021年教育支出的年平均增长率为x,由题意得:
,
,
解得,(舍)
答:2019年到2021年教育支出的年平均增长率为10%.
【点睛】
本题考查的是一元二次方程的应用,掌握“两次变化后的量=原来的量(1+平均增长率)2”是解题的关键.
2、这两年投入教育经费的年平均增长率为
【分析】
根据等量关系:2019年投入教育经费×(1+x)2=2021年投入教育经费列方程求解即可.
【详解】
解:设2019年至2021年该地区投入教育经费的年平均增长率为,
根据题意,得,
解得:,或(不合题意舍去),
答:这两年投入教育经费的年平均增长率为.
【点睛】
本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.
3、道路的宽为2m
【分析】
设道路的宽为xm,根据图形可以把草坪面积看做是一个长为m,宽为m的长方形面积,由此建立方程求解即可.
【详解】
解:设道路的宽为xm,
由题意得:,
∴,
∴,
∴,
解得或(舍去),
∴道路的宽为2m.
【点睛】
本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解.
4、
【分析】
直接用公式法求解即可.
【详解】
∴
∴
,
【点睛】
本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
5、见解析
【分析】
分两种情况,当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,方程为一元二次方程,由于b2-4ac=(m﹣1)2≥0,则可判断方程有两个实数根.
【详解】
证明:当m=0时,方程化为x﹣2=0,解得x=2;
当m≠0时,∵b2-4ac=(3m﹣1)2﹣4m(2m﹣2)
=m2﹣2m+1
=(m﹣1)2≥0,
∴关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣2=0有两个实数根,
综上所述,无论m取任何实数,关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0恒有实数根.
【点睛】
本题考查了一元一次方程的解,以及一元二次方程根的判别式,分类讨论是解答本题的关键.
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试综合训练题: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试综合训练题,共16页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题,共15页。试卷主要包含了下列命题中,逆命题不正确的是,已知方程的两根分别为m,方程x2﹣x=0的解是等内容,欢迎下载使用。
数学八年级下册第十六章 一元二次方程综合与测试测试题: 这是一份数学八年级下册第十六章 一元二次方程综合与测试测试题,共16页。试卷主要包含了一元二次方程的解为,若a是方程的一个根,则的值为,下列事件为必然事件的是等内容,欢迎下载使用。