数学八年级下册第十六章 一元二次方程综合与测试测试题
展开京改版八年级数学下册第十六章一元二次方程定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )
A. B.
C. D.
2、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是( )
A. B.
C. D.
3、一元二次方程的解是( ).
A.5 B.-2 C.-5或2 D.5或-2
4、一元二次方程的解为( )
A., B., C., D.,
5、若a是方程的一个根,则的值为( )
A.2020 B. C.2022 D.
6、下列一元二次方程中有两个相等实数根的是( )
A.x2﹣8=0 B.x2﹣4x+4=0 C.2x2+3=0 D.x2﹣2x﹣1=0
7、下列事件为必然事件的是( )
A.抛掷一枚硬币,正面向上
B.在一个装有5只红球的袋子中摸出一个白球
C.方程x2﹣2x=0有两个不相等的实数根
D.如果|a|=|b|,那么a=b
8、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )
A. B.
C. D.
9、下列一元二次方程两实数根和为-4的是( )
A. B.
C. D.
10、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知实数a是一元二次方程x2﹣2016x+1=0的根,求代数式a2﹣2015a﹣的值为_____.
2、若关于x的一元二次方程有两个实数根,则m 的取值范围是______________.
3、一元二次方程3x2﹣6x=0的根是_____.
4、将化为一般形式为________.
5、如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为_______.
三、解答题(5小题,每小题10分,共计50分)
1、宜宾市某楼盘准备以每平方米9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米7290元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?
2、小林准备如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段在桌面上各围成一个正方形.
(1)要使这两个正方形的面积之和为,小林该如何剪?
(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他说的对吗?请说明理由.
3、用适当的方法解方程
(1);
(2).
4、解一元二次方程:
(1)
(2)
5、已知关于的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若,且此方程的两个实数根的差为3,求的值.
-参考答案-
一、单选题
1、C
【分析】
设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.
【详解】
解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,
由题意得:,
故选C.
【点睛】
本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.
2、A
【分析】
股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.
【详解】
设x为平均每天下跌的百分率,
则:(1+10%)•(1-x)2=1;
故选:A.
【点睛】
考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.
3、D
【分析】
直接把原方程化为两个一次方程或,再解一次方程即可.
【详解】
解:
或
解得:
故选D
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“因式分解法解一元二次方程的步骤”是解本题的关键.
4、A
【分析】
根据因式分解法即可求解.
【详解】
∴x-1=0或x-3=0
∴,
故选A.
【点睛】
此题主要考查解一元二次方程的求解,解题的关键是熟知因式分解法的运用.
5、C
【分析】
先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.
【详解】
解:是关于的方程的一个根,
,
,
,
.
故选:C.
【点睛】
本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.
6、B
【分析】
由根的判别式为Δ=b2﹣4ac,挨个计算四个选项中的Δ值,由此即可得出结论.
【详解】
解:A、∵Δ=b2﹣4ac=02﹣4×1×(﹣8)=32>0,
∴该方程有两个不相等的实数根;
B、∵Δ=b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=0,
∴该方程有两个相等的实数根;
C、∵Δ=b2﹣4ac=02﹣4×2×3=﹣24<0,
∴该方程没有实数根;
D、∵Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,
∴该方程有两个不相等的实数根.
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数.
7、C
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可
【详解】
解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;
B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;
C、∵,∴方程x2﹣2x=0有两个不相等的实数根,是必然事件,符合题意;
D、如果|a|=|b|,那么a=b或a=-b,不是必然事件,不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
8、C
【分析】
根据增长率的意义,列式即可.
【详解】
设这个增长率为,
根据题意,得,
故选C.
【点睛】
本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.
9、D
【分析】
根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可
【详解】
解:A. ,,,不符合题意;
B. ,,该方程无实根,不符合题意;
C. ,,该方程无实根,不符合题意;
D. ,,该方程有实根,且,符合题意;
故选D
【点睛】
本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键.
10、C
【分析】
设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.
【详解】
解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,
依题意得:.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.
二、填空题
1、
【分析】
利用方程解的定义得到,然后利用整体代入的方法计算代数式的值.
【详解】
解:是方程的根,
,
,
原式
.
故答案是:.
【点睛】
本题主要考查了一元二次方程的解的定义,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
2、
【分析】
根据一元二次方程 (为常数)的根的判别式,解不等式即可求得m 的取值范围
【详解】
解:关于x的一元二次方程有两个实数根,
=
解得
故答案为:
【点睛】
本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
3、x1=2,x2=0
【分析】
根据因式分解法即可求出答案.
【详解】
解:∵3x2﹣6x=0,
∴3x(x﹣2)=0,
∴3x=0或x﹣2=0,
∴x1=2,x2=0,
故答案为:x1=2,x2=0.
【点睛】
本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.
4、
【分析】
移项,将方程右边化为0
【详解】
解:化为一般形式为
故答案为:.
【点睛】
本题考查一元二次方程的定义,属于基础题,一元二次方程的一般式:.
5、(62﹣x)(42﹣x)=2400.
【分析】
设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据草坪的面积为2400平方米,即可得出关于x的一元二次方程,此题得解.
【详解】
解:设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,
根据题意得(62﹣x)(42﹣x)=2400.
故答案为:(62﹣x)(42﹣x)=2400.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
三、解答题
1、(1)10%;(2)方案①更优惠,理由见解析.
【分析】
(1)设平均每次下调的百分率为x,利用预订每平方米销售价格×(1-x)2=开盘每平方米销售价格列方程解答即可;
(2)分别解出两种方案的房款,再作比较即可.
【详解】
解:(1)设平均每次下调的百分率为x,根据题意列方程得,
解得(舍去)
答:平均每次下调的百分率为10%.
(2)方案①的房款:(元)
加上两年的物业管理费共需要:(元)
方案②的房款:(元)
故方案①更优惠.
【点睛】
本题考查一元二次方程的应用,掌握相关知识,根据等量关系列方程,解方程是关键.
2、(1)剪成的两段分别为12cm,28cm;(2)小峰的说法正确,理由见解析
【分析】
(1)设剪成的两段分别为,,然后由题意得,进而问题可求解;
(2)设剪成的两段分别为,,然后由题意得,进而问题可求解.
【详解】
解:设剪成的两段分别为,.
(1)根据题意,得,解得,.
当时,;当时,.
∴剪成的两段分别为12cm,28cm.
(2)根据题意,得,整理,得.
∵,
∴该方程无解,
∴小峰的说法正确.
【点睛】
本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.
3、(1),,(2)
【分析】
用因式分解法解方程即可.
【详解】
解:(1),
,
,
,;
(2),
,
,
.
【点睛】
本题考查了一元二次方程解法,解题关键是熟练运用因式分解法解方程.
4、(1),;(2),
【分析】
(1)根据直接开平方法解一元二次方程;
(2)根据公式法解一元二次方程先确定;再求,然后代入公式即可.
【详解】
解:(1)开方得:,
解得:,;
(2),
∵,
∴,
∴,
∴,.
【点睛】
本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.
5、(1)见解析;(2)
【分析】
(1)证明一元二次方程的判别式大于等于零即可;
(2)用m表示出方程的两个根,比较大小后,作差计算即可.
【详解】
(1)证明:∵一元二次方程,
∴
==.
∵,
∴.
∴ 该方程总有两个实数根.
(2)解:∵一元二次方程,
解方程,得,.
∵ ,
∴ .
∵该方程的两个实数根的差为3,
∴ .
∴.
【点睛】
本题考查了一元二次方程根的判别式,方程的解法,熟练掌握判别式,并灵活运用实数的非负性是解题的关键.
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习,共16页。试卷主要包含了已知方程的两根分别为m,一元二次方程的解为,一元二次方程的根的情况是,方程的解是等内容,欢迎下载使用。
数学八年级下册第十六章 一元二次方程综合与测试同步训练题: 这是一份数学八年级下册第十六章 一元二次方程综合与测试同步训练题,共17页。试卷主要包含了一元二次方程根的情况是等内容,欢迎下载使用。