初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题,共15页。试卷主要包含了下列命题中,逆命题不正确的是,已知方程的两根分别为m,方程x2﹣x=0的解是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的一元二次方程x2-mx+(m-2)=0的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.根据m的取值范围确定2、一元二次方程x2﹣x=0的解是( )A.x1=0,x2=1 B.x1=x2=1 C.x1=0,x2=﹣1 D.x1=1,x2=﹣13、一元二次方程x2=-2x的解是( )A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-24、下列命题中,逆命题不正确的是( )A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方5、关于x的方程有两个不相等的实数根,则n的取值范围是( )A.n< B.n ≤ C.n> D.n>6、已知方程的两根分别为m、n,则的值为( )A.1 B. C.2021 D.7、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为( )A.20% B.30% C.40% D.50%8、若一元二次方程x25x+k =0的一根为2,则另一个根为( )A.3 B.4 C.5 D.69、方程x2﹣x=0的解是( )A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=110、一元二次方程的解为( )A., B., C., D.,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,设该厂四、五月份的月平均增长率为x,则可列方程为______.2、某旅游景点6月份共接待游客64万人次,暑期放假学生旅游人数猛增,且每月的增长率相同,8月份共接待游客81万人次,如果每月的增长率都为x,则根据题意可列方程 _____.3、某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 _____.4、设a,b是方程x2+x﹣2021=0的两个实数根,则a2+2a+b的值为____.5、如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为_______.三、解答题(5小题,每小题10分,共计50分)1、解方程:.2、解方程:(1)x2-2x-3=0; (2)x (x-2)-x+2=0.3、 “惠民政策”陆续出台,老百姓得到实惠,某种心脏支架原价10000元一副,经过连续两次降价后,现在仅卖729元一副,求该种支架平均每次降价的百分率.4、解方程:(1)(x﹣5)2=(2﹣3x)2;(2)x2﹣10x+16=0;(3)2x2﹣x﹣2=0.5、解方程:(1)(2) -参考答案-一、单选题1、A【分析】根据根的判别式判断即可.【详解】∵,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程根的判别式,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记判别式并灵活应用是解题关键.2、A【分析】方程左边含有公因式x,可先提取公因式,然后再分解因式求解.【详解】解:∵x2-x=0,∴x(x-1)=0,则x=0或x-1=0,解得:x1=0,x2=1.故选A.【点睛】本题考查一元二次方程的解法-因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3、D【分析】先移项、然后再利用因式分解法解方程即可.【详解】解 :x2=-2xx2+2x=0x(x+2)=0,x=0或x+2=0,所以x1=0,x2=-2.故选:D.【点睛】本题考查了解一元二次方程−因式分解法,把解一元二次方程的问题转化为解一元一次方程的问题成为解答本题的关键.4、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.5、A【分析】利用判别式的意义得到△=>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)²﹣4n>0,解得n< .故选:A.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.6、B【分析】由题意得mn=1,m2﹣2021m+1=0,将代数式变形后再代入求解即可.【详解】∵方程x2﹣2021x+1=0的两根分别为m,n,∴mn=1,m2﹣2021m+1=0,∴m2﹣2021m=﹣1,∴m2﹣=﹣1,故选:B.【点睛】本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=,熟练掌握代数式的求值技巧是解题的关键.7、C【分析】先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.【详解】解:设全市5G用户数年平均增长率为x,根据题意,得: ,整理得:,∴,解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).故选:C.【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.8、A【分析】设方程的另一根为t,根据根与系数的关系得到2+t=5,求出t即可.【详解】解:设方程的另一根为t,根据题意得2+t=5,解得t=3.故选A.【点睛】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=,x1·x2=.9、D【分析】因式分解后求解即可.【详解】x2﹣x=0,x(x-1)=0,x=0,或x-1=0,解得x1=0,x2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10、A【分析】根据因式分解法即可求解.【详解】∴x-1=0或x-3=0∴,故选A.【点睛】此题主要考查解一元二次方程的求解,解题的关键是熟知因式分解法的运用.二、填空题1、【分析】该厂四、五月份的月平均增长率为x,根据增长率公式即可得出五月份的产量是,据此列方程即可.【详解】∵该厂四、五月份的月平均增长率为x,∴五月份的产量是,∴,故答案为:.【点睛】本题考查一元二次方程的应用,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到,再经过第二次调整就是,增长用“+”,下降用“−”.2、64(1+x)2=81【分析】如果每月的增长率都为x,根据某旅游景点6月份共接待游客64万人次,则7月份接待游客64(1+x)万人次,8月份共接待游客64(1+x)2万人次,根据题意可列出方程.【详解】解:设每月的增长率都为x,列方程得64(1+x)2=81.故答案为:64(1+x)2=81.【点睛】本题考查了增长率问题,理解题意,用含x式子表示出8月份游客人次是解题关键.3、【分析】先设增长率为x,那么第四季度的营业额可表示为200(1+x)2,已知第四季度营业额为288万元,即可列出方程,从而求解.【详解】解:设每季度的平均增长率为x,根据题意得:200(1+x)2=288,解得:x=﹣2.2(不合题意舍去),x=0.2,则每季度的平均增长率是20%.故答案为:20%【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.4、【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【详解】解:∵a,b是方程x2+x−2021=0的两个实数根,
∴a2+a−2021=0,即a2+a=2021,a+b==−1,
∴a2+2a+b=a2+a+a+b=2021−1=,故答案为:.【点睛】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.5、(62﹣x)(42﹣x)=2400.【分析】设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据草坪的面积为2400平方米,即可得出关于x的一元二次方程,此题得解.【详解】解:设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据题意得(62﹣x)(42﹣x)=2400.故答案为:(62﹣x)(42﹣x)=2400.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题1、,【分析】先用根的判别式判断根是否存在,然后再利用求根公式解答即可.【详解】解:∵,∴,即,.【点睛】本题主要考查了运用公式法解一元二次方程,牢记一元二次方程的求根公式()是解答本题的关键.2、(1)x1=3,x2=-1;(2)x1=2, x2=1【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:x2-2x-3=0x2-2x+1=3+1(x-1)2=4x-1=±2∴x1=3,x2=-1;(2)解:x (x-2)-(x-2)=0(x-2)(x-1)=0x-2=0或x-1=0∴x1=2, x2=1.【点睛】本题考查解一元二次方程,掌握一元二次方程的求解方法,并根据题意灵活选择适当的解题方法是解题关键.3、该种支架平均每次降价的百分率为73%.【分析】设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1﹣x),第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【详解】解:设该种支架平均每次降价的百分率为x,由题意得:10000(1﹣x)2=729,解得:x1=0.73,x2=1.27(不合题意舍去),∴x=0.73=73%,答:该种支架平均每次降价的百分率为73%.【点睛】此题主要考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4、(1)x1=,x2=﹣;(2)x1=2,x2=8;(3)x1=,x2=﹣.【分析】(1)直接利用因式分解的方法解一元二次方程即可;(2)直接利用因式分解的方法解一元二次方程即可;(3)直接利用因式分解的方法解一元二次方程即可.【详解】解:(1)∵(x﹣5)2=(2﹣3x)2,∴,∴,∴解得:x1=,x2=;(2)∵x2﹣10x+16=0,∴(x﹣2)(x﹣8)=0,∴x﹣2=0或x﹣8=0,解得x1=2,x2=8;(3)∵,∴,∴,∴,.【点睛】本题主要考查了解一元二次方程 ,解题的关键在于能够熟练掌握解一元二次方程的方法.5、(1)原方程无解;(2).【分析】(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;(2)方程两边同乘以化成整式方程,再解一元二次方程即可得.【详解】解:(1),方程两边同乘以,得,移项、合并同类项,得,系数化为1,得,经检验,不是分式方程的解,所以原方程无解;(2),方程两边同乘以,得,移项、合并同类项,得,因式分解,得,解得或,经检验,不是分式方程的解;是分式方程的解,所以原方程的解为.【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共15页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测,共17页。试卷主要包含了一元二次方程的解是,小亮等内容,欢迎下载使用。
这是一份初中北京课改版第十六章 一元二次方程综合与测试课时作业,共19页。