北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题
展开这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题,共17页。试卷主要包含了一元二次方程的二次项系数,如图,某学校有一块长35米等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若方程的一个根为,则的值是( )
A.7 B. C.4 D.
2、关于x的一元二次方程x2-mx+(m-2)=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.根据m的取值范围确定
3、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为( )
A.1 B.-1 C.1或-1 D.0
4、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )
A. B.
C. D.
5、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )
A.-10 B.10 C.-6 D.6
6、若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是( )
A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0
7、一元二次方程的二次项系数、一次项系数、常数项分别是( )
A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,5
8、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )
A. B.
C. D.
9、下列方程中,是关于x的一元二次方程是( )
A. B. C. D.
10、已知关于x的方程有两个不相等的实数根,则a的值可能为( ).
A.3 B.4 C.5 D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知(x+3)(x﹣2)+m=x2+x,则一元二次方程x2+x﹣m=0的根是 _____.
2、若关于的一元二次方程有一个根为0,则________.
3、如图1,塔吊是建筑工地上常用的一种起重设备,可以用来搬运货物.如图2,已知一款塔吊的平衡臂ABC部分构成一个直角三角形,且,起重臂AD可以通过拉伸BD进行上下调整.现将起重臂AD从水平位置调整至位置,使货物E到达位置(挂绳DE的长度不变且始终与地面垂直).此时货物E升高了24米,且到塔身AH的距离缩短了16米,测得,则AC的长为_____________米.
4、方程x2﹣9=0的解是_____.
5、若关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,则实数k的取值范围是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
(1)x2﹣4x﹣1=0;
(2)x2﹣x﹣12=0.
2、已知关于x的方程x2 - 5x + m = 0
(1)若方程有一根为 - 1,求m的值;
(2)若方程无实数根,求m的取值范围
3、解方程:.
4、(1)计算:.
(2)解方程:.
5、随着元旦的到来,某超市准备在元旦期间推出甲、乙两种商品,甲型的售价是乙型的.
(1)元旦第一周该商家两种商品的总销售额为3600元,乙商品的销售额是甲商品的2倍,销售量比甲商品多40件,求甲商品销售了多少件?
(2)为增加销量,该商家第二周决定将乙商品的售价下调%,甲商品的售价保持不变,结果与第一周相比,乙商品的销量增加了%,甲商品的销量增加了a%,最终第二周的销售额比第一周的销售额增加了%,求a的值.
-参考答案-
一、单选题
1、D
【分析】
将代入方程求解即可.
【详解】
解:将代入可得:
,
解得:,
故选:D.
【点睛】
题目主要考查方程与根的关系,将根代入方程求解是解题关键.
2、A
【分析】
根据根的判别式判断即可.
【详解】
∵,
∴方程有两个不相等的实数根.
故选:A.
【点睛】
本题考查一元二次方程根的判别式,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记判别式并灵活应用是解题关键.
3、B
【分析】
根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可.
【详解】
解:根据题意将x=0代入方程可得:a2-1=0,
解得:a=1或a=-1,
∵a-1≠0,即a≠1,
∴a=-1,
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.
4、C
【分析】
设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.
【详解】
解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,
由题意得:,
故选C.
【点睛】
本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.
5、D
【分析】
根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.
【详解】
解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,
∴x1+x2=﹣m=-2+4,解得:m=﹣2,
x1•x2=n=-2×4,解得:n=-8,
∴m-n=﹣2-(-8)=6.
故选D.
【点睛】
本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.
6、B
【分析】
根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(-4)2-4 k×(-2)≥0,然后求出两不等式组的公共部分,两种情况合并即可.
【详解】
解:根据题意得:①当时,方程是一元一次方程,此时﹣4x﹣2=0,方程有实数解;
②当时,此方程是一元二次方程,可得
k≠0且Δ=(-4)2-4 k×(-2)≥0,
解得k≥-2且k≠0.
综上,当时,关于x的方程kx2﹣4x﹣2=0有实数根,
故选:B.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.
7、B
【分析】
根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.
【详解】
解:∵一元二次方程2x2+x-5=0,
∴二次项系数、一次项系数、常数项分别是2、1、-5,
故选:B.
【点睛】
此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).
8、C
【分析】
设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.
【详解】
解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,
依题意得:.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.
9、C
【分析】
根据只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程选择即可.
【详解】
A.当a=0时,是一元一次方程,该选项不符合题意;
B.分母上有未知数,是分式方程,该选项不符合题意;
C.是关于x的一元二次方程,该选项符合题意;
D.经整理后为,是一元一次方程,该选项不符合题意.
故选择C.
【点睛】
本题考查识别一元二次方程,理解一元二次方程的定义是解答本题的关键.
10、A
【分析】
根据方程有两个不相等的实数根,判别式△>0,确定a的取值范围,判断选择即可.
【详解】
∵方程有两个不相等的实数根,
∴判别式△>0,
∴,
∴a<4,
故选A.
【点睛】
本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.
二、填空题
1、或.
【分析】
由题意将(x+3)(x﹣2)+m=x2+x变形为,进而即可求得一元二次方程x2+x﹣m=0的根.
【详解】
解:∵(x+3)(x﹣2)+m=x2+x,
∴,
∵x2+x﹣m=0,
∴,
解得:或.
故答案为:或.
【点睛】
本题考查求一元二次方程的根,注意将(x+3)(x﹣2)+m=x2+x变形为是解题的关键.
2、1或-1或1
【分析】
将x=1代入方程求解即可.
【详解】
解:将x=1代入方程得到
解得m=1或-1
故答案为:1或-1.
【点睛】
此题考查了一元二次方程的解,已知方程的解时应将解代入方程求某字母系数的值.
3、7
【分析】
过点B作于点M,由题意易得,则有四边形是矩形,设,则,然后根据勾股定理可得AF的长,进而问他可求解.
【详解】
解:过点B作于点M,如图所示:
由题意得:,
∴四边形是矩形,
∴,
设,则,在中,由勾股定理得:
,解得:,
∴,
设,
∴,
∴,
在中,,
在中,,
∴,整理得:,
解得:;
故答案为7.
【点睛】
本题主要考查勾股定理、矩形的性质与判定及一元二次方程的解法,熟练掌握勾股定理、矩形的性质与判定及一元二次方程的解法是解题的关键.
4、x=±3
【分析】
这个等式左边是一个平方差公式,直接分解因式,然后求出x即可.
【详解】
解:x2﹣9=0,
(x+3)(x﹣3)=0,
或
所以x=3或x=﹣3.
故答案为:x=±3.
【点睛】
本题考查的是利用因式分解解一元二次方程,掌握“利用平方差公式把方程的左边分解因式”是解题的关键.
5、 且
【分析】
利用一元二次方程根的判别式,即可求解.
【详解】
解:∵关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,
∴且 ,
解得: 且 .
故答案为: 且
【点睛】
本题考查了一元二次方程的定义,一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.
三、解答题
1、(1),;(2),.
【分析】
(1)利用配方法求解即可;
(2)利用因式分解法求解即可.
【详解】
解:(1)∵,
∴,
∴,
∴,
∴,
∴,;
(2)∵,
∴,
∴,.
【点睛】
本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.
2、(1)m的值为.(2)
【分析】
(1)将代入原方程,即可求出m的值.
(2)令根的判别式,即可求出m的取值范围.
【详解】
(1)解:方程有一根为 - 1,
是该方程的根,
,解得:,
故m的值为.
(2)解:方程无实数根
,解得:.
【点睛】
本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.
3、,
【分析】
确定,,,采用求根公式法解答即可.
【详解】
∵,
∴,,,
△,
则,
,.
【点睛】
本题考查了一元二次方程的解法,熟练掌握求根公式是解题的关键.
4、(1)2;(2)或.
【分析】
(1)由题意先利用二次根式的乘除运算法则计算,进而计算算术平方根,最后计算加减法即可;
(2)根据题意利用配方法进行计算即可解出方程.
【详解】
解:(1)
原式
(2)
则或,
解得:或.
【点睛】
本题考查二次根式的乘除运算和解一元二次方程,熟练掌握二次根式的乘除运算法则和利用配方法求解方程是解题的关键.
5、(1)80件;(2)40
【分析】
(1)先求得第一周甲乙商品的销售额,设甲商品销售了x件,则乙商品销售了件,根据题意列方程求解即可;
(2)先求得第一周甲乙商品的销售单价,根据题意列方程求解即可.
【详解】
解:(1)第一周甲商品的销售额为(元),
第一周乙商品的销售额为(元).
设甲商品销售了x件,则乙商品销售了件,
依题意,得:,解得:,
经检验,是原方程的解,且符合题意.
答:甲商品销售了80件.
(2)第一周甲商品的销售单价为(元),
第一周乙商品的销售单价为(元).
依题意,得:
整理,得:,
解得:,(不合题意,舍去).
答:a的值为40.
【点睛】
本题考查分式方程及一元二次方程的应用,解题关键是找准等量关系,正确列出方程.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习,共16页。试卷主要包含了方程x2﹣8x=5的根的情况是,下列事件为必然事件的是等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试课后测评,共17页。试卷主要包含了关于x的一元二次方程等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题,共18页。试卷主要包含了小亮等内容,欢迎下载使用。