北京课改版八年级下册第十六章 一元二次方程综合与测试测试题
展开京改版八年级数学下册第十六章一元二次方程专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用配方法解方程x2+4x=1,变形后结果正确的是( )
A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=2
2、已知关于x的方程有两个不相等的实数根,则a的值可能为( ).
A.3 B.4 C.5 D.6
3、方程x2﹣x=0的解是( )
A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=1
4、下列一元二次方程两实数根和为-4的是( )
A. B.
C. D.
5、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
6、一元二次方程的二次项系数、一次项系数、常数项分别是( )
A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,5
7、一元二次方程x2﹣x=0的解是( )
A.x1=0,x2=1 B.x1=x2=1 C.x1=0,x2=﹣1 D.x1=1,x2=﹣1
8、用配方法解方程x2+2x=1,变形后的结果正确的是( )
A.(x+1)2=-1 B.(x+1)2=0 C.(x+1)2=1 D.(x+1)2=2
9、一元二次方程的一个根为,那么c的值为( ).
A.9 B.3 C. D.
10、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程
A.128(1 - x2)= 88 B.88(1 + x)2 = 128
C.128(1 - 2x)= 88 D.128(1 - x)2 = 88
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列各数:-2,-1,0,2,3,是一元二次方程x²+3x+2=0的根的是_________.
2、关于x的方程的一个根是,则m=________.
3、已知关于x方程的一个根是1,则m的值等于______.
4、设x1,x2是关于x的一元二次方程x2﹣mx+2m=0的两个根,当x1为1时则x1x2的值是________.
5、若关于x的一元二次方程有两个实数根,则m 的取值范围是______________.
三、解答题(5小题,每小题10分,共计50分)
1、已知关于x的一元二次方程x²﹣mx+m﹣1=0有两个实数根x1,x2.
(1)求m的取值范围;
(2)当x12+x22=6x1x2+1时,求m的值.
2、阅读与思考
配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和.巧妙的运用“配方法”能对一些多项式进行因式分解.
例如:
(1)解决问题:运用配方法将下列多项式进行因式分解
①;
②
(2)深入研究:说明多项式的值总是一个正数?
(3)拓展运用:已知a、b、c分别是的三边,且,试判断的形状,并说明理由.
3、已知关于的一元二次方程.
(1)求证:该方程总有两个实数根;
(2)若该方程有一个根小于2,求的取值范围.
4、某商城购进了一批某种品牌冰箱,标价为每台3000元.
(1)为回馈新老用户,在国庆节期间,商城对冰箱进行了连续两次降价销售,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;
(2)市场调研表明:当每台冰箱的售价为3000元时,每天能售出8台;当每台冰箱的售价每降50元时,每天就能多售出4台;若商城计划在某天销售20台冰箱,则每台冰箱的售价应定为多少元?
5、解方程:.
-参考答案-
一、单选题
1、A
【分析】
方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.
【详解】
解:x2+4x=1
即
故选A
【点睛】
本题考查了配方法解一元二次方程,掌握配方法是解题的关键.
2、A
【分析】
根据方程有两个不相等的实数根,判别式△>0,确定a的取值范围,判断选择即可.
【详解】
∵方程有两个不相等的实数根,
∴判别式△>0,
∴,
∴a<4,
故选A.
【点睛】
本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.
3、D
【分析】
因式分解后求解即可.
【详解】
x2﹣x=0,
x(x-1)=0,
x=0,或x-1=0,
解得x1=0,x2=1,
故选:D
【点睛】
此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
4、D
【分析】
根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可
【详解】
解:A. ,,,不符合题意;
B. ,,该方程无实根,不符合题意;
C. ,,该方程无实根,不符合题意;
D. ,,该方程有实根,且,符合题意;
故选D
【点睛】
本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键.
5、C
【分析】
设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.
【详解】
解:设该商店销售额平均每月的增长率为x,
依题意得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
∴该商店销售额平均每月的增长率为50%.
故选:C.
【点睛】
本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.
6、B
【分析】
根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.
【详解】
解:∵一元二次方程2x2+x-5=0,
∴二次项系数、一次项系数、常数项分别是2、1、-5,
故选:B.
【点睛】
此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).
7、A
【分析】
方程左边含有公因式x,可先提取公因式,然后再分解因式求解.
【详解】
解:∵x2-x=0,
∴x(x-1)=0,
则x=0或x-1=0,
解得:x1=0,x2=1.
故选A.
【点睛】
本题考查一元二次方程的解法-因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
8、D
【分析】
方程两边同时加上一次项系数一半的平方即可得到答案.
【详解】
解:∵x2+2x=1,
∴x2+2x+1=1+1,
∴(x+1)2=2,
故选D.
【点睛】
本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.
9、D
【分析】
把x=-3代入方程,然后解关于c的方程即可.
【详解】
解:把x=-3代入方程得
9+c=0,
所以c=-9.
故选D.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
10、D
【分析】
根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.
【详解】
解:依题意得:128(1-x)2=88.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
二、填空题
1、-1和-2
【分析】
直接用因式分解的方法求出一元二次方程的根即可得到答案.
【详解】
解:∵,
∴,
解得,,
∴-2,-1,0,2,3,中是方程的根的是-2,-1,
故答案为:-1和-2.
【点睛】
本题主要考查了解一元二次方程和一元二次方程根的定义,熟知解一元二次方程的方法是解题的关键.
2、
【分析】
将代入方程即可求解.
【详解】
解:关于x的方程的一个根是,
解得
故答案为:
【点睛】
本题考查了一元二次方程的解定义,掌握方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.
3、2
【分析】
把方程的根代入原方程,求解即可.
【详解】
解:因为关于x方程的一个根是1,
所以,,解得,,
故答案为:2.
【点睛】
本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解.
4、-2
【分析】
把代入,得,所以方程为,即可求解.
【详解】
解:把代入,得:
解得:,
∴方程为,
∴x1x2==-2.
故答案为:-2
【点睛】
本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.
5、
【分析】
根据一元二次方程 (为常数)的根的判别式,解不等式即可求得m 的取值范围
【详解】
解:关于x的一元二次方程有两个实数根,
=
解得
故答案为:
【点睛】
本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
三、解答题
1、(1)一切实数;(2)7或1
【分析】
(1)根据判别式的意义得到Δ=(m﹣2)2≥0,然后解不等式即可;
(2)根据根与系数的关系得到得x1+x2=m,x1x2=m﹣1,利用x12+x22=6x1x2+1,得到2﹣2(m﹣1)=6(m﹣1)+1,然后解m的方程可得到满足条件的m的值.
【详解】
解:(1)根据题意得Δ=(﹣m)2﹣4(m﹣1)≥0,
∴(m﹣2)2≥0,
∴m取一切实数;
(2)根据题意得x1+x2=m,x1x2=m﹣1,
∵x12+x22=6x1x2+1,
∴(x1+x2)2﹣2x1x2=6x1x2+1,
即m2﹣2(m﹣1)=6(m﹣1)+1,
解得m=7或m=1,
∴m的值为7或1.
【点睛】
本题考查了根与系数的关系以及根的判别式,解答本题的关键是掌握两根之和与两根之积的表达方式.
2、(1)①;②;(2)见解析;(3)等边三角形,理由见解析
【分析】
(1)仿照例子运用配方法进行因式分解即可;
(2)利用配方法和非负数的性质进行说明即可;
(3)展开后利用分组分解法因式分解后利用非负数的性质确定三角形的三边的关系即可.
【详解】
解:(1)①
.
②
(2)
∵
∴
∴多项式的值总是一个正数.
(3)为等边三角形.
理由如下:∵
∴
∴
∴,
∴
∴为等边三角形.
【点睛】
本题考查了因式分解的应用,解题的关键是仔细阅读材料理解配方的方法.
3、(1)证明见解析;(2).
【分析】
(1)根据方程的系数结合根的判别式,可得△=(k−4)2≥0,由此可证出方程总有两个实数根;
(2)利用分解因式法解一元二次方程,可得出x1=4,x2=k,根据方程有一根小于2,即可得出k的取值范围.
【详解】
(1)∵,
∴△=,
∴方程总有两个实数根.
(2)∵,
∴,
解得:,,
∵该方程有一个根小于2,
∴.
【点睛】
本题考查了根的判别式、因式分解法解一元二次方程,利用因式分解法解一元二次方程表示出方程的两个根,熟练掌握当△≥0时,方程有两个实数根是解题关键.
4、(1)每次降价的百分率是10%;(2)定价为2850元.
【分析】
(1)设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x)元,第二次后的价格是60(1﹣x)2元,据此即可列方程求解;
(2)假设下调a个50元,销售冰箱数量=原销售量+多售出量,即可列方程求解.
【详解】
解:(1)设每次降价的百分率为x,
依题意得:3000(1﹣x)2=2430,
解得x1=0.1=10%,x2=1.9(不合题意,舍去)
答:每次降价的百分率是10%;
(2)假设下调a个50元,依题意得:20=8+4a.
解得a=3.
所以下调150元,因此定价为3000-150=2850元.
【点睛】
本题主要考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.
5、或
【分析】
利用十字相乘因式分解,进而即可求解.
【详解】
,
,
∴或,
解得:或.
【点睛】
本题主要考查解一元二次方程,熟练掌握“十字相乘法”是解题的关键.
2021学年第十七章 方差与频数分布综合与测试练习题: 这是一份2021学年第十七章 方差与频数分布综合与测试练习题,共19页。试卷主要包含了某校八年级人数相等的甲等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试精练: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试精练,共16页。试卷主要包含了下列事件为必然事件的是,方程的解是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共18页。试卷主要包含了方程的解是,一元二次方程根的情况是,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。