初中第十六章 一元二次方程综合与测试课后作业题
展开这是一份初中第十六章 一元二次方程综合与测试课后作业题,共15页。试卷主要包含了方程(x-1)2 = 0的根是,下列方程中是一元二次方程的是,用配方法解方程,则方程可变形为,一元二次方程的根的情况是,股市规定等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,逆命题不正确的是( )
A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0
B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
C.全等三角形对应角相等
D.直角三角形的两条直角边的平方和等于斜边的平方
2、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )
A. B. C. D.
3、若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则2021﹣2a+2b的值等于( )
A.2015 B.2017 C.2019 D.2022
4、方程(x-1)2 = 0的根是( )
A.x = - 1 B.x1 = x2 = 1 C.x1 =x2= - 1 D.x1 = 1,x2 = -1
5、下列方程中是一元二次方程的是( )
A.y+2=1 B.=0 C. D.
6、已知m,n是一元二次方程的两个实数根,则的值为( ).
A.4 B.3 C. D.
7、用配方法解方程,则方程可变形为( )
A. B. C. D.
8、一元二次方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.无实数根
9、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是( )
A. B.
C. D.
10、下列关于的一元二次方程中,有两个相等的实数根的方程是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某工厂生产一款零件的成本为500元,经过两年的技术创新,现在生产这款零件的成本为405元,求该款零件成本平均每年的下降率是多少?设该款零件成本平均每年的下降率为,可列方程为______.
2、2021年10月10日,第七届黑龙江绿色食品产业博览会开幕,虎林市组建团队参加,为增进了解,在参加会议前团队每两个人间互送了一次名片,一共送出90张名片,则这个团队有_______人.
3、若关于x的方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,称此方程为“月亮”方程,已知方程a2x2﹣1999ax+1=0(a≠0)是“月亮”方程,求a2+1999a+的值为 _____.
4、代数式的最小值是_______.
5、关于x的方程有两个不相等的实数根,则m的取值范围是______.
三、解答题(5小题,每小题10分,共计50分)
1、国家鼓励大学生自主创业,并有相关的支持政策,受益于支持政策的影响,某大学生自主创立的公司利润逐年提高,据统计,2017年利润为200万元,2019年利润为288万元,求该公司从2017年到2019年利润的年平均增长率.
2、解方程:
3、已知关于x的一元二次方程有两个不相等的实数根.
(1)求a的取值范围;
(2)若a为正整数,求方程的根.
4、某蔬菜交易市场2020年10月份的蔬菜交易量是5000吨,到2020年12月份达到7200吨.
(1)求这两个月平均每月增长的百分率.
(2)按(1)中的增长率,预测2021年1月份的交易量是 吨.
5、(1)计算:.
(2)解方程:.
-参考答案-
一、单选题
1、C
【分析】
分别写出各个命题的逆命题,然后判断正误即可.
【详解】
解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;
B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;
C.逆命题为:对应角相等的两三角形全等,错误,符合题意;
D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.
故选:C
【点睛】
本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.
2、A
【分析】
将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.
【详解】
解:∵,
∴,
∴,即,
故选A.
【点睛】
本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
3、B
【分析】
根据一元二次方程根的定义将代入方程ax2+bx﹣2=0可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.
【详解】
解:将代入方程ax2+bx﹣2=0可得,即
2021﹣2a+2b=
故选B
【点睛】
本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键.
4、B
【分析】
根据直接开平方法可进行求解一元二次方程.
【详解】
解:
,
∴;
故选B.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
5、B
【分析】
只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可.
【详解】
解:A.是二元二次方程,故本选项不合题意;
B.是一元二次方程,故本选项符合题意;
C.是二元二次方程,故本选项不合题意;
D.当a=0时,不含二次项,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.
6、A
【分析】
根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解.
【详解】
解:∵m、n是一元二次方程的两个实数根,
∴m+n=4.
故选:A.
【点睛】
本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.
7、D
【分析】
根据配方法解一元二次方程步骤变形即可.
【详解】
∵
∴
∴
∴
∴
故选:D.
【点睛】
本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.
8、D
【分析】
根据一元二次方程根的判别式解题.
【详解】
解:
所以此方程无解,
故选:D.
【点睛】
本题考查一元二次方程根的判别式,是重要考点,,方程有两个不相等的实数根;方程有两个相等的实数根;方程无解.
9、A
【分析】
股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.
【详解】
设x为平均每天下跌的百分率,
则:(1+10%)•(1-x)2=1;
故选:A.
【点睛】
考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.
10、B
【分析】
利用一元二次方程的根的判别式,即可求解.
【详解】
解:A、 ,所以该方程无实数根,故本选项不符合题意;
B、 ,所以该方程有两个相等实数根,故本选项符合题意;
C、 ,所以该方程有两个不相等实数根,故本选项不符合题意;
D、 ,所以该方程有两个不相等实数根,故本选项不符合题意;
故选:B
【点睛】
本题主要考查了一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.
二、填空题
1、
【分析】
根据题意可用x表示出经过两年的技术创新后生产这款零件成本的代数式,即可列出方程.
【详解】
设该款零件成本平均每年的下降率为x,
经过第一年的技术创新后生产这款零件的成本为(元),
经过第二年的技术创新后生产这款零件的成本为(元),
所以可列方程为:.
故答案为:.
【点睛】
本题考查一元二次方程的实际应用.根据题意找出数量关系列出方程是解答本题的关键.
2、10
【分析】
设这个团队有x人,根据“每两个人间互送了一次名片,一共送出90张名片,”列出方程求解即可.
【详解】
解:设这个团队有x人,则
x(x-1)=90,
解得:(舍),
∴个团队有10,
故答案为:10.
【点睛】
本题考查了由实际问题抽象出一元二次方程,解题的关键是根据题意列出方程.
3、-2
【分析】
根据“月亮”方程的定义得出,变形为代入计算即可.
【详解】
解:∵方程是“月亮”方程,
∴,
∴,
∴
故答案为-2.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边都相等的未知数的值是一元二次方程的解.利用整体代入的方法计算是解决本题的关键.
4、
【分析】
利用配方法得到:.利用非负数的性质作答.
【详解】
解:因为≥0,
所以当x=1时,代数式的最小值是,
故答案是:.
【点睛】
本题主要考查了配方法的应用,非负数的性质.配方法的理论依据是公式a2±2ab+b2=(a±b)2.
5、
【分析】
利用判别式的意义得到△,然后解不等式即可.
【详解】
解:根据题意得△,
解得.
故答案是:.
【点睛】
本题考查了根的判别式,解题的关键是掌握一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.
三、解答题
1、该公司从2017年到2019年利润的年平均增长率为20%
【分析】
设该公司从2017年到2019年利润的年平均增长率为x,然后根据2017年利润为200万元,2019年利润为288万元,列出方程求解即可.
【详解】
解:设该公司从2017年到2019年利润的年平均增长率为x,
由题意得:,
解得,
∴该公司从2017年到2019年利润的年平均增长率为20%,
答:该公司从2017年到2019年利润的年平均增长率为20%.
【点睛】
本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解.
2、,
【分析】
因式分解,可化为的形式,令,得出方程的解.
【详解】
解:
或
,.
【点睛】
本题考察了一元二次方程求解.解题的关键与难点是将方程进行因式分解.
3、(1)a<;(2)
【分析】
(1)根据方程的系数结合根的判别式Δ=b2-4ac>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围;
(2)由(1)的结论结合a为正整数,即可得出a=1,将其代入原方程,再利用公式法解一元二次方程,即可求出原方程的解.
【详解】
解:(1)∵关于的一元二次方程有两个不相等的实数根,
∴>0,
解得a<,
∴的取值范围为a<.
(2)∵a<,且a为正整数,
∴,代入,
此时,方程为.
∴解得方程的根为
【点睛】
本题考查了根的判别式以及公式法解一元二次方程,解题的关键是:(1)牢记“当Δ>0时,方程有两个不相等的实数根”;(2)利用因式分解法求出方程的两个根.
4、(1)20%;(2)8640.
【分析】
(1)设这两个月平均每月增长的百分率为x,利用2020年12月份的蔬菜交易量=2020年10月份的蔬菜交易量×(1+这两个月平均每月增长的百分率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)利用2021年1月份的蔬菜交易量=2020年12月份的蔬菜交易量×(1+这两个月平均每月增长的百分率),即可求出结论.
【详解】
解:(1)设这两个月平均每月增长的百分率为x,
依题意得:5000(1+x)2=7200,
化简得25x2+50x-9=0
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:这两个月平均每月增长的百分率为20%.
(2)7200×(1+20%)=8640(吨).
故答案为:8640.
【点睛】
本题考查了二次函数相关的增长率问题,有关增长率问题的等量关系:①原产量+增产量=现在的产量;②增产量=原产量×增长率;③现在的产量=原产量×(1+增长率).④若连续n个月增长率相同则有:a(1+增长率)n=b.对于连续变化的问题,都是以前一个时间段为基础,平均增长(降低)率也是如此,如二月份的产量是在一月份的基础上变化的,三月份的产量是在二月份的基础上变化的.
5、(1)2;(2)或.
【分析】
(1)由题意先利用二次根式的乘除运算法则计算,进而计算算术平方根,最后计算加减法即可;
(2)根据题意利用配方法进行计算即可解出方程.
【详解】
解:(1)
原式
(2)
则或,
解得:或.
【点睛】
本题考查二次根式的乘除运算和解一元二次方程,熟练掌握二次根式的乘除运算法则和利用配方法求解方程是解题的关键.
相关试卷
这是一份2020-2021学年第十六章 一元二次方程综合与测试习题,共18页。试卷主要包含了已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试精练,共16页。试卷主要包含了把方程化成.,一元二次方程的解是等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试一课一练,共15页。