![2022年最新强化训练京改版八年级数学下册第十六章一元二次方程综合练习试卷(含答案详解)第1页](http://www.enxinlong.com/img-preview/2/3/12701758/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练京改版八年级数学下册第十六章一元二次方程综合练习试卷(含答案详解)第2页](http://www.enxinlong.com/img-preview/2/3/12701758/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练京改版八年级数学下册第十六章一元二次方程综合练习试卷(含答案详解)第3页](http://www.enxinlong.com/img-preview/2/3/12701758/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习
展开这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习,共16页。试卷主要包含了方程x2﹣8x=5的根的情况是,下列事件为必然事件的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为( )
x | ﹣2.1 | ﹣2.2 | ﹣2.3 | ﹣2.4 |
y | ﹣1.39 | ﹣0.76 | ﹣0.11 | 0.56 |
A.x≈﹣2.15 B.x≈﹣2.21 C.x≈﹣2.32 D.x≈﹣2.41
2、下列一元二次方程中有两个相等实数根的是( )
A.x2﹣8=0 B.x2﹣4x+4=0 C.2x2+3=0 D.x2﹣2x﹣1=0
3、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是( )
A.没有实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.无法判断
4、若是关于的方程的一个根,则的值是( )
A. B. C.1 D.2
5、下列一元二次方程两实数根和为-4的是( )
A. B.
C. D.
6、下列关于的一元二次方程中,有两个相等的实数根的方程是( )
A. B. C. D.
7、方程x2﹣8x=5的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.有一个实数根
8、下列事件为必然事件的是( )
A.抛掷一枚硬币,正面向上
B.在一个装有5只红球的袋子中摸出一个白球
C.方程x2﹣2x=0有两个不相等的实数根
D.如果|a|=|b|,那么a=b
9、用配方法解方程x2+4x=1,变形后结果正确的是( )
A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=2
10、已知m,n是方程的两根,则代数式的值等于( )
A.0 B. C.9 D.11
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为_______.
2、设x1,x2是方程x2-3x-1=0的两个根,则x1+x2=_____,x1x2=______.
3、某旅游景点6月份共接待游客64万人次,暑期放假学生旅游人数猛增,且每月的增长率相同,8月份共接待游客81万人次,如果每月的增长率都为x,则根据题意可列方程 _____.
4、若x0是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式Δ=b2﹣4ac与平方式M=(2ax0+b)2的大小比较△_______M(填>,<,=).
5、己知t是方程x2﹣x﹣2=0的根,则式子2t2﹣2t+2021的值为_____.
三、解答题(5小题,每小题10分,共计50分)
1、2021年是中欧班列开通十周年.某地自开通中欧班列以来,逐渐成为我国主要的集贸区域之一.2019年该地中欧班列的开行量为500列,2021年达到1280列.求该地这两年中欧班列开行量的年平均增长率.
2、解方程:
(1)(配方法)
(2)(公式法)
3、解方程:
(1)x2﹣6x﹣4=0;
(2)3x(x+1)=3x+3.
4、已知关于x的方程x2 - 5x + m = 0
(1)若方程有一根为 - 1,求m的值;
(2)若方程无实数根,求m的取值范围
5、已知关于x的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程的两个根都是正整数,求a的最小值.
-参考答案-
一、单选题
1、C
【分析】
根据表可得,方程2x2﹣2x﹣10=0的一个解应在﹣2.3与﹣2.4之间,再由y的值可得,它的根近似的看作是﹣2.3.
【详解】
∵当x=﹣2.3时,y=﹣0.11,
当x=﹣2.4时,y=0.56,
则方程的根﹣2.3<x<﹣2.4,
∵|﹣0.11|<|0.56|,
∴方程2x2﹣2x﹣10=0的一个近似解为x≈﹣2.32.
故选:C.
【点睛】
本题考查了用图象法求一元二次方程的近似根,解题的关键是看y值的变化.
2、B
【分析】
由根的判别式为Δ=b2﹣4ac,挨个计算四个选项中的Δ值,由此即可得出结论.
【详解】
解:A、∵Δ=b2﹣4ac=02﹣4×1×(﹣8)=32>0,
∴该方程有两个不相等的实数根;
B、∵Δ=b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=0,
∴该方程有两个相等的实数根;
C、∵Δ=b2﹣4ac=02﹣4×2×3=﹣24<0,
∴该方程没有实数根;
D、∵Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,
∴该方程有两个不相等的实数根.
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数.
3、B
【分析】
判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.
【详解】
解:∵关于x的一元二次方程为ax2+bx+c=0,
∴Δ=b2﹣4ac,
∵ac<0,
∴﹣ac>0,
又∵b2≥0,
∴Δ>0,
∴方程有两个不相等的实数根.
故选B.
【点睛】
本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.
4、A
【分析】
将n代入方程,然后提公因式化简即可.
【详解】
解:∵是关于x的方程的根,
∴,即,
∵,
∴,即,
故选:A.
【点睛】
本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.
5、D
【分析】
根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可
【详解】
解:A. ,,,不符合题意;
B. ,,该方程无实根,不符合题意;
C. ,,该方程无实根,不符合题意;
D. ,,该方程有实根,且,符合题意;
故选D
【点睛】
本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键.
6、B
【分析】
利用一元二次方程的根的判别式,即可求解.
【详解】
解:A、 ,所以该方程无实数根,故本选项不符合题意;
B、 ,所以该方程有两个相等实数根,故本选项符合题意;
C、 ,所以该方程有两个不相等实数根,故本选项不符合题意;
D、 ,所以该方程有两个不相等实数根,故本选项不符合题意;
故选:B
【点睛】
本题主要考查了一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.
7、A
【分析】
计算一元二次方程根的判别式求解即可.
【详解】
∵方程x2﹣8x=5,
移项得:,
,,,
∴判别式,
∴方程有两个不相等的实数根,
故选:A.
【点睛】
此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.
8、C
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可
【详解】
解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;
B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;
C、∵,∴方程x2﹣2x=0有两个不相等的实数根,是必然事件,符合题意;
D、如果|a|=|b|,那么a=b或a=-b,不是必然事件,不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
9、A
【分析】
方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.
【详解】
解:x2+4x=1
即
故选A
【点睛】
本题考查了配方法解一元二次方程,掌握配方法是解题的关键.
10、C
【分析】
利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.
【详解】
解:∵m,n是方程的两根,
∴, ,
∴,
∴.
故选:C
【点睛】
本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.
二、填空题
1、(62﹣x)(42﹣x)=2400.
【分析】
设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据草坪的面积为2400平方米,即可得出关于x的一元二次方程,此题得解.
【详解】
解:设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,
根据题意得(62﹣x)(42﹣x)=2400.
故答案为:(62﹣x)(42﹣x)=2400.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
2、3 -1
【分析】
利用一元二次方程根与系数的关系,即可求解.
【详解】
解:∵x1,x2是方程x2-3x-1=0的两个根,
∴ .
故答案为:3,-1
【点睛】
本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.
3、64(1+x)2=81
【分析】
如果每月的增长率都为x,根据某旅游景点6月份共接待游客64万人次,则7月份接待游客64(1+x)万人次,8月份共接待游客64(1+x)2万人次,根据题意可列出方程.
【详解】
解:设每月的增长率都为x,列方程得
64(1+x)2=81.
故答案为:64(1+x)2=81.
【点睛】
本题考查了增长率问题,理解题意,用含x式子表示出8月份游客人次是解题关键.
4、=
【分析】
首先把展开,然后把x0代入方程ax2+bx+c=0中得,再代入前面的展开式中即可得到△与M的关系.
【详解】
解:把x0代入方程中得,
∵,
∴ ,
∴Δ=M.
故答案为:=.
【点睛】
本题是一元二次方程的解与根的判别式的结合试题,考查了根的判别式,既利用了方程的根的定义,也利用了完全平方公式.
5、2025
【分析】
根据一元二次方程的解的定义得到t2-t-2=0,则t2-t=2,然后把2t2-2t+2021化成2(t2-t)+2021,再利用整体代入的方法计算即可.
【详解】
解:当x=t时,t2-t-2=0,则t2-t=2,
所以2t2-2t+2021=2(t2-t)+2021=4+2021=2025.
故答案为:2025.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.用了整体代入思想.
三、解答题
1、该地这两年中欧班列开行量的年平均增长率为60%.
【分析】
根据题意,2019年该地中欧班列的开行量为500列,2021年达到1280列,设该地这两年中欧班列开行量的年平均增长率为x,列出一元二次方程求解即可得.
【详解】
解:设该地这两年中欧班列开行量的年平均增长率为x,根据题意可得:
,
解得:或(舍去),
∴该地这两年中欧班列开行量的年平均增长率为60%.
【点睛】
题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.
2、(1);(2)
【分析】
(1)利用配方法,首先将常数项移项,再配方,方程两边同时加上一次项系数一半的平方求出即可;
(2)利用公式法直接代入求出即可.
【详解】
(1)
(2)
∴
∴
【点睛】
本题考查了解一元二次方程,熟练掌握公式法、配方法的解题步骤是解题的关键.
3、(1)x1=+3,x2=-+3(2)x1=-1,x2=1
【分析】
(1)根据配方法即可求解;
(2)根据因式分解法即可求解.
【详解】
(1)x2﹣6x﹣4=0
x2﹣6x+9=13
(x-3)2=13
x-3=±
∴x1=+3,x2=-+3
(2)3x(x+1)=3x+3
3x(x+1)-3(x+1)=0
3(x+1)(x-1)=0
∴x+1=0或x-1=0
∴x1=-1,x2=1.
【点睛】
此题主要考查解一元二次方程,解题的关键是熟知配方法与因式分解法的运用.
4、(1)m的值为.(2)
【分析】
(1)将代入原方程,即可求出m的值.
(2)令根的判别式,即可求出m的取值范围.
【详解】
(1)解:方程有一根为 - 1,
是该方程的根,
,解得:,
故m的值为.
(2)解:方程无实数根
,解得:.
【点睛】
本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.
5、(1)证明见详解;(2)a的最小值为0.
【分析】
(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根;
(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定a的取值范围,即可求出a的最小值.
【详解】
(1)证明:依题意得:
,
,
∴ .
∴方程总有两个实数根;
(2)由,
可化为:
得 ,
∵ 方程的两个实数根都是正整数,
∴ .
∴ .
∴a的最小值为0.
【点睛】
本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测,共17页。试卷主要包含了一元二次方程的解是,小亮等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试课后测评,共17页。试卷主要包含了关于x的一元二次方程等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步练习题,共16页。试卷主要包含了不解方程,判别方程的根的情况是等内容,欢迎下载使用。