终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布章节测试试题(无超纲)

    立即下载
    加入资料篮
    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布章节测试试题(无超纲)第1页
    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布章节测试试题(无超纲)第2页
    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布章节测试试题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂达标检测题,共20页。试卷主要包含了一组数据a-1,已知一组数据的方差s2=[等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是(  )A.0.6 B.6 C.0.4 D.42、为了了解某校七年级名学生的跳绳情况(秒跳绳的次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是(        )A.跳绳次数不少于次的占B.大多数学生跳绳次数在范围内C.跳绳次数最多的是D.由样本可以估计全年级人中跳绳次数在次的大约有3、已知数据的平均数,方差,则数据的平均数和方差分别为(   A.5,12 B.5,6 C.10,12 D.10,64、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为(    A.11 B.10 C.9 D.85、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是(    ).A.100,55% B.100,80% C.75,55% D.75,80%6、一组数据a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是(    A.2m-3、2n-3 B.2m-1、4n C.2m-3、2n D.2m-3、4n7、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是(   A.7 B.8 C.9 D.108、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S2=5,S2=20,S2=23,S2=32,则这四名学生的数学成绩最稳定的是(  )A.甲 B.乙 C.丙 D.丁9、已知一组数据的方差s2[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](ab为常数),则a+b的值为(  )A.5 B.7 C.10 D.1110、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是(    A.乙同学的成绩更稳定 B.甲同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定 D.不能确定哪位同学的成绩更稳定第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为_____.2、已知一组数据的平均数是5,极差为3,方差为2,则另一组新数组的平均数是________,极差是________,方差是________.3、已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为,则___.(填“”、“”、“”)
     4、七年级(5)班20名女生的身高如下(单位:cm): 153 156 152 158 156 160 163 145 152 153 162 153 165 150 157 153 158 157 158 158(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):身高(cm)140~150150~160160~170频数   百分比   (2)上表把身高分成___组,组距是___;(3)身高在___范围的人数最多.5、某校八年级(1)班甲、乙两名同学在10次射箭成绩情况如下表所示,体育老师根据这10次成绩,会选择______同学参加比赛.(填“甲”或“乙”) 平均数(环)众数(环)中位数(环)方差(环)8.7991.58.71093.2 三、解答题(5小题,每小题10分,共计50分)1、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_______名;(2)补全条形统计图,并计算阅读部分圆心角是_______度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?2、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的折线统计图如下:(1) 请补充完成下面的成绩统计分析表: 平均分方差中位数合格率优秀率甲组      3.76      90%30%乙组7.2      7.580%20%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组;但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.3、某学校为了调查学生利用“天天跳绳”APP锻炼身体的使用频率,随机抽取了部分学生,利用调查问卷进行抽样调查:用“A”表示“一周5次”,“B”表示“一周4次”,“C”表示“一周3次”,“D”表示“一周2次”(必须选且只选一项),如图是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)本次调查中,共调查了多少人?(2)将图(2)补充完整;(3)如果该学校有学生1000人,请你估计该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有多少人?4、为配合“禁烟”行动,某校组织同学们在我市某社区开展了“你最支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个不完整的统计图:
     (1)根据以上信息,把条形统计图补充完整(并标注人数);(2)在统计图中,表示“强制戒烟”方式的扇形的圆心角为多少度?(3)假定该社区有1万人,请估计该社区大约有多少人支持采取“警示戒烟”这种戒烟方式?5、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.级别观点频数(人数)A大气气压低,空气不流动80B地面灰尘大,空气湿度低mC汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m     n     ,扇形统计图中E组所占的百分比为      %;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议? -参考答案-一、单选题1、C【分析】先求出反面朝上的频数,然后根据频率=频数÷总数求解即可【详解】解:∵小明抛一枚硬币100次,其中有60次正面朝上,∴小明抛一枚硬币100次,其中有40次反面朝上,∴反面朝上的频率=40÷100=0.4,故选C.【点睛】本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.2、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得.【详解】A、跳绳次数不少于次的占,选项说法正确,符合题意;B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;故选A.【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.3、C【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可.【详解】解:∵数据的平均数即:∴数据的平均数为又∵数据的方差即:∴数据的方差为故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:分10组.故选:B.【点睛】本题考查了组距的划分,一般分为组最科学.5、B【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,∴第五小组的频率是∴此次统计的样本容量是∵合格成绩为20,∴本次测试的合格率是故选B【点睛】本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.6、B【分析】根据平均数和方差的变化规律即可得出答案.【详解】a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n∴数据abcdefg的平均数是m+1,方差是n
    ∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;
    ∵数据abcdefg的方差是n
    ∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22n=4n
    故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.7、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数.【详解】解:第4小组的频数是40−(6+5+15+7)=7,
    故选:A.【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.8、A【分析】根据方差的意义求解即可.【详解】解:∵S2=5,S2=20,S2=23,S2=32,S2S2S2S2∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.9、D【分析】根据方差的定义得出这组数据为6,10,ab,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,ab,8,其平均数为7,
    ×(6+10+ab+8)=7,
    ab=11,
    故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.10、A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A.【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.二、填空题1、【分析】先由平均数是5计算的值,再根据方差的计算公式,直接计算可得.【详解】解:一组数据7,2,5,,8的平均数是5,故答案为:【点睛】本题考查的是算术平均数和方差的计算,解题的关键是掌握方差的计算公式:一般地设个数据,的平均数为,则方差2、11    6    8    【分析】根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1,极差为2×3,方差是方差为2×22,再进行计算即可.【详解】解:∵数据x1x2x3x4x5的平均数是5,极差为3,方差为2,∴新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1=11,极差为2×3=6,方差为2×22=8,故答案为:11、6、8.【点睛】此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.3、>【分析】先计算两组数据的平均数,再计算它们的方差,即可得出答案.【详解】解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,
    乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,
    = ×(6+7×3+8×2+9×3+10)=8,
    =×(6+7×2+8×4+9×2+10)=8,
    S2=×[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]
    =×[4+3+3+4]
    =1.4;
    S2=×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]
    =×[4+2+2+4]
    =1.2;
    ∵1.4>1.2,
    S2S2
    故答案为:>.【点睛】题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1x2,…xn的平均数为,则方差S2= [(x1-2+(x2-2+…+(xn-2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、3
        10    150~160    【分析】(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;(3)根据所填信息确定身高在哪个范围的人数最多即可.【详解】(1)填表:身高(cm)140~150150~160160~170频数1154百分比5%75%20%(2)上表把身高分成3组,组距是10;(3)身高在范围最多.【点睛】本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.5、甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙两名同学平均数相同且S2S2∴甲的成绩较稳定,∴从稳定性角度考虑,会选择甲同学参加比赛.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题1、(1)100,600;(2)图形见解析,108°;(3)500【分析】(1)根据娱乐的人数以及百分比求出总人数即可.再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数.
    (2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.
    (3)根据总人数,个体,百分比之间的关系解决问题即可.【详解】(1)总人数=20÷20%=100(名),
    若该校共有1500名学生,估计全校爱好运动的学生有1500×=600(名).
    故答案为100,600.
    (2)阅读人数圆心角=条形图如图所示:

    故答案为108.
    (3)150÷30%=500(名),
    答:估计九年级有500名学生.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、(1)甲组平均数为6.8,中位数为6,乙组方差为1.96;(2)见解析【分析】(1)由折线图中数据,根据中位数和加权平均数、方差的定义求解可得;(2)可从平均数和中位数两方面阐述即可.【详解】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其平均数为=6.8,中位数为6,乙组成绩从小到大排列为:5、5、6、7、7、8、8、8、9、9,∴乙组学生成绩的方差为=[2×(5-7.2)2+(6-7.2)2+2×(7-7.2)2+3×(8-7.2)2+2×(9-7.2)2]=1.96;(2)①因为乙组学生的平均分高于甲组学生,所以乙组学生的成绩好于甲组;②因为乙组学生的中位数高于甲组学生,所以乙组学生的成绩好于甲组;所以乙组学生的成绩好于甲队组.【点睛】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.3、(1)人;(2)补全图形见解析;(3)【分析】(1)由C组有100人,占比列式计算后可得答案;(2)先求解B组人数,再补全图形即可;(3)由总人数1000乘以D组“一周2次”的占比即可得到答案.【详解】解:(1)由C组有100人,占比 可得:本次调查中,共调查人.(2)B组人数有人,补全图形如下:(3)该学校有学生1000人,该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有:人.【点睛】本题考查的是从扇形图与条形图中获取信息,补全条形统计图,利用样本估计总体,理解扇形图与条形图中关联信息是解本题的关键.4、(1)见解析;(2)144°;(3)3500人【分析】(1)在条形统计图中找出“代替品戒烟”人数为30人,在扇形统计图中所占的百分比为,求出随机调查的总人数,由总人数及“药物戒烟”所占的百分比,“警戒戒烟”所占的百分比,求出各自的人数,补全条形统计图即可;(2)“强制戒烟”的人数为120人,总人数为300人,求出所占的百分比,再乘以即可;(3)先求出样本中支持“警戒戒烟”这种方式所占的百分比,再利用样本估计总体即可得出答案.【详解】(1)如图所示:(2)调查的人数=30÷10%=300(人),“强制戒烟”方式的扇形的圆心角=(120÷300)×100%×360°=144°;(3)支持“警示戒烟”方式的人数=(1-10%-15%-40%)×10000=3500(人),答:该社区大约有3500人支持采取“警示戒烟”这种戒烟方式.【点睛】本题考查条形统计图、扇形统计图以及用样本估计总体,根据统计图,找出有用信息是解题的关键.5、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键. 

    相关试卷

    数学第十七章 方差与频数分布综合与测试同步练习题:

    这是一份数学第十七章 方差与频数分布综合与测试同步练习题,共20页。试卷主要包含了下列一组数据等内容,欢迎下载使用。

    数学八年级下册第十七章 方差与频数分布综合与测试精练:

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试精练,共23页。试卷主要包含了在一次射击训练中,甲,下列说法正确的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共22页。试卷主要包含了一组数据1,在一次投篮训练中,甲等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map