数学八年级下册第十七章 方差与频数分布综合与测试课后练习题
展开
这是一份数学八年级下册第十七章 方差与频数分布综合与测试课后练习题,共22页。试卷主要包含了已知一组数据的方差s2=[,一组数据等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )A.平均数是89 B.众数是93C.中位数是89 D.方差是2.82、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在小组,而不在小组),根据图形提供的信息,下列说法中错误的是( )
A.该学校教职工总人数是50人B.年龄在小组的教职工人数占总人数的20%C.某教师40岁,则全校恰有10名教职工比他年轻D.教职工年龄分布最集中的在这一组3、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是( ) 平均成绩(分)95989698方差3322A. B. C. D.4、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( ) 参加人数平均数中位数方差甲4095935.1乙4095954.6A.甲班的成绩比乙班的成绩稳定B.甲班成绩优异的人数比乙班多C.甲,乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名5、已知一组数据的方差s2=[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为( )A.5 B.7 C.10 D.116、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数 B.中位数 C.平均数 D.方差7、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( ) 甲乙丙丁平均数/m180180185185方差8.23.9753.9A.甲 B.乙 C.丙 D.丁8、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( ) 甲乙丙丁 方差3.63.244.3A.甲组 B.乙组 C.丙组 D.丁组9、用计算器计算方差时,要首先进入统计计算状态,需要按键( )A. B.C. D.10、在对一组样本数据进行分析时,小华列出了方差的计算公式S2=,下列说法错误的是( )A.样本容量是5 B.样本的中位数是4C.样本的平均数是3.8 D.样本的众数是4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若式子的值为非负数,则满足条件的所有整数a的方差是_____2、已知一组数据a、b、c、d、e的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.3、一组数据0,1,3,2,4的平均数是__,这组数据的方差是__.4、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)5、一组数据:2021,2021,2021,2021,2021,2021的方差是______.三、解答题(5小题,每小题10分,共计50分)1、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.2、对饮食健康越来越关注,特别关注食物的热量高低某校现在对学生食品的热量进行调查,随机从八、九年级中各随机抽取20名学生,对其食品热量进行整理、描述和分析(热量值用表示,共分为四个等级:A.,B.,C.,D.),下面给出了部分信息.八年级20名学生食品的热量中B等级包含的所有数据为:73,76,76,77,77,77,79.九年级20名学生食品的热量是:64,64,66,68,69,70,72,74,77,78,80,82,85,85,85,85,86,93,96,101.八、九年级抽取的学生食品热量统计表年级八年级九年级平均数7979中位数a79众数81b根据以上信息,解答下列问题:(1)填空:上述图表中____________, ____________.(2)根据图表中的数据,判断八、九年级中哪个年级学生食品的热量更高?请说明理由(写出一条理由即可);(3)若该校八、九年级分别有1500,1600名学生,估计学生吃的食品的热量为A等级的学生共有多少人?3、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82八年级10名学生的成绩在C组中的数据是:94,90,92七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级bcd52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中 年级成绩更平衡,更稳定;(2)直接写出上述a、b、c的值:a= ,b= ,c= ;d= (3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的人数4、为了培养学生的数学学习兴趣,现从学校八、九年级中各抽取10名学生的数学竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:),下面给出了部分信息:八年级抽取的10名学生的竞赛成绩是:;九年级抽取的10名学生的竞赛成绩是:;八、九年级抽取的学生竞赛成绩统计表年级平均分中位数众数方差八年级9189.5n45.2九年级91m9339.2请根据相关信思,回答以下问题;(1)直接写出表格中m,n的值并补全九年级抽取的学生数学竞赛成绩频数分布直方图;(2)根据以上数据,你认为该校八、九年级中哪个年级学生数学竞赛成绩较好?请说明理由(一条由即可);(3)该校八年级有600人,九年级有800人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀的学生人数是多少.5、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.整理数据: 80859095100七年级22321八年级124a1分析数据: 平均数中位数众数方差七年级8990e八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过计算求出e的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这两个年级共多少名学生达到“优秀”? -参考答案-一、单选题1、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为,故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.2、C【分析】各组的频数的和就是总人数,再根据百分比、众数、中位数的定义逐一解题.【详解】解:A. 该学校教职工总人数是4+6+11+10+9+6+4=50人,正确,故A不符合题意;B. 年龄在小组的教职工人数占总人数的20%,正确,故B不符合题意;C. 教职工年龄的中位数在这一组,某教师40岁,则全校恰有10名教职工比他年轻说法是错误的,故C符合题意;D. 教职工年龄分布最集中的在这一组,正确,故D不符合题意,故选:C.【点睛】本题考查频数分布直方图,是重要考点,从图中获取正确信息是解题关键.3、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键4、D【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【详解】A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D.【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.5、D【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,
则×(6+10+a+b+8)=7,
∴a+b=11,
故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.6、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;∴统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.7、D【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵,∴从丙和丁中选择一人参加比赛,∵S丙2>S丁2,∴选择丁参赛,故选:D.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.8、B【分析】由平均数相同,根据方差越小越稳定可得出结论.【详解】解:∵4.3>4>3.6>3.2∴,∵四个小组的平均分相同,∴乙组各成员实力更平均,选择乙组代表年级参加学校决赛.故选择B.【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.9、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.10、D【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为,则样本的容量是5,选项A正确;样本的中位数是4,选项B正确;样本的平均数是,选项C正确;样本的众数是3和4,选项D错误;故选:D.【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.二、填空题1、##【分析】先求出为非负数时所有整数的值,再求出其方差即可.【详解】解:由题意可得,,∴,解得.故的所有整数值为,,,0,1,2.该组数的平均数为:.方差为:.故填.【点睛】此题将分式的意义、二次根式成立的条件和方差相结合,考查了同学们的综合运用数学知识能力.2、【分析】根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.【详解】解:∵数据a、b、c、d、e的方差是1.2,∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.故答案为:4.8.【点睛】本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.3、2 2 【分析】依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得.【详解】解:这组数据的平均数,方差,故答案为:2,2.【点睛】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键.4、变大【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0,∴这组数据的平均数是,∴这8次跳远成绩的方差是:∵0.0225>,∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键.5、0【分析】根据方差的定义求解.【详解】∵这一组数据都一样∴平均数为2021∴方差=故答案为:0.【点睛】本题考查方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题1、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的平均成绩,再根据方差公式进行计算;
(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2、(1)78,85;(2)九年级学生食品热量更高,理由见解析;(3)780人【分析】(1)根据八年级的数据求得A等级人数,判断出中位数位于B等级,可求得a的值,根据众数的意义以及九年级的数据求得b;(2)比较平均数、中位数可得结论;(3)分别计算该校八、九年级学生的食品热量为A等级的百分比可得答案.【详解】解:(1)八年级学生食品的热量处于A等级人数20(人),∴八年级学生食品的热量的中位数位于B等级的第6、7两个数据,即77、79,∴a=;九年级20名学生食品的热量出现最多是85,共有4次,∴a=85;故答案为:78,85;(2)九年级学生食品热量更高. 理由如下:由样本数据可得,八、九年级学生食品热量的平均数均为79,而八年级学生食品热量的中位数78,九年级学生食品热量的中位数79,79>78,所以九年级学生食品热量更高;(3)由样本数据可得,八年级学生的食品热量为A等级的有4人,占比﹔九年级学生的食品热量为A等级的有6人,占比.则两个年级共有( 人).【点睛】本题考查了中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.3、(1)八;(2)40;91.4;93;96;(3)840人【分析】(1)根据方差的意义求解即可;
(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;
(3)用总人数乘以样本中成绩优秀(x≥90)的八年级学生人数对应的百分比即可.【详解】(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,
∴八年级成绩的方差小于七年级成绩的方差,
∴八年级成绩更平衡,更稳定;
故答案为:八;
(2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,
∴a%=1-(20%+10%+30%)=40%,即a=40;七年级的平均数=
将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,
则这组数据的中位数七年级的成绩中96出现次数最多,所以众数d=96,
故答案为:40;91.4;93;96;
(3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1-20%-10%)=840(人).【点睛】考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键.4、(1)n=89,m=92.5,补图见解析;(2)九年级学生掌握防火安全知识较好,理由见解析;(3)840人【分析】(1)直接根据八年级抽取的10名学生的竞赛成绩可得其众数n的值,将九年级抽取的I0名学生的竞赛成绩重新排列,利用中位数的概念可得m的值,继而补全频数分布直方图可得答案;(2)在平均成绩相等的前提下可比较中位数、众数或方差,合理即可得;(3)用总人数乘以样本中成绩不低于90分人数占被调查人数的比例即可得.【详解】解:(1)由题意知八年级抽取的10名学生的竞赛成绩的众数n=89,将九年级抽取的10名学生的竞赛成绩重新排列为80,83,85,90,92,93,93,95,99,100,∴其中位数m= =92.5,补全频数分布直方图如下:(2)九年级学生掌握防火安全知识较好,理由如下:∵八、九年级参加竞赛的10名学生的平均成绩相等,但九年级10名学生成绩的方差小,∴九年级参加竞赛的10名学生的成绩更加稳定,∴九年级学生掌握防火安全知识较好.(3)估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是(600+800)×=840(人).【点睛】本题考查频数分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5、(1)a=2,b=90,c=90,d=90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人【分析】(1)通过八年级抽取人数10人,即可得到a,根据中位数、平均数、众数的定义得到b、c、d;(2)根据方差的计算公式,求解即可;(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.【详解】解:(1)观察八年级95分的有2人,故a=2;七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100,七年级的中位数为,故b=90;八年级的平均数为:,故c=90;八年级中90分的最多,故d=90;(2)七年级的方差;(3)八年级的学生成绩好,理由如下:七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;(4)∵(人),∴估计该校七、八年级这次竞赛达到优秀的有1040人.【点睛】本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.
相关试卷
这是一份数学八年级下册第十七章 方差与频数分布综合与测试精练,共19页。试卷主要包含了下列说法中正确的是.等内容,欢迎下载使用。
这是一份北京课改版第十七章 方差与频数分布综合与测试巩固练习,共20页。试卷主要包含了在频数分布表中,所有频数之和,2020年某果园随机从甲,在一次射击训练中,甲,一组数据等内容,欢迎下载使用。
这是一份数学第十七章 方差与频数分布综合与测试同步练习题,共20页。试卷主要包含了下列一组数据等内容,欢迎下载使用。