北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题
展开
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题,共16页。试卷主要包含了用配方法解方程,则方程可变形为等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )A.20% B.25% C.50% D.62.5%2、一元二次方程的二次项系数、一次项系数、常数项分别是( )A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,53、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )A.﹣2 B.2 C.﹣4 D.44、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )A. B.12 C. D.或5、用配方法解方程,则方程可变形为( )A. B. C. D.6、某商品售价准备进行两次下调,如果每次降价的百分率都是x,经过两次降价后售价由298元降到了268元,根据题意可列方程为( ).A. B.C. D.7、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )A. B.C. D.8、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.119、若m是方程x2+x﹣1=0的根,则2m2+2m+2020的值为( )A.2022 B.2021 C.2020 D.201910、下列所给方程中,没有实数根的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、凌源市“百合节”观赏人数逐年增加,据有关部门统计,2018年约为5万人次,2020年约为6.8万人次,设观赏人数年均增长率为x,则可列方程________________.2、关于的一元二次方程有一个根为1,则的值为________.3、已知是关于的方程的一个根,则______.4、某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 _____.5、小华在解一元二次方程x2=6x时,只得出一个根是x=6,则被他漏掉的一个根是x=______.三、解答题(5小题,每小题10分,共计50分)1、A市计划对本市215万人接种新冠疫苗,在前期完成5万人接种后,又花了100天时间接种了剩下的210万人.在这100天中,该市的接种时间和接种人数的关系如图所示.(1)前40天中,每天接种的人数为 人.(2)这100天中,B市的接种人数y(万人)与接种天数x(天)的关系为,①请通过计算判断,第40天接种完成后,B市的接种人数是否超过A市?②直接写出第几天接种完成后,A,B两市接种人数恰好相同?2、在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在边AB上(不与点A,B重合),将△ANM绕点M逆时针旋转90°得到△BPM.问:△BPN的面积能否等于3,请说明理由.3、解方程:4、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法)5、已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为 - 1,求m的值;(2)若方程无实数根,求m的取值范围 -参考答案-一、单选题1、C【分析】设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.【详解】解:设该商店销售额平均每月的增长率为x,依题意得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).∴该商店销售额平均每月的增长率为50%.故选:C.【点睛】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.2、B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.【详解】解:∵一元二次方程2x2+x-5=0,∴二次项系数、一次项系数、常数项分别是2、1、-5,故选:B.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).3、B【分析】根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.【详解】解:∵一元二次方程x2+k﹣3=0有一个根为1,∴将代入得,,解得:.故选:B.【点睛】此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.4、D【分析】先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可.【详解】∵,∴(x-2)(x-5)=0,∴∴另一边长为=或=,∴矩形的面积为2×=或5×=5,故选D.【点睛】本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键.5、D【分析】根据配方法解一元二次方程步骤变形即可.【详解】∵∴∴∴∴故选:D.【点睛】本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.6、D【分析】根据该商品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:298(1-x)2=268.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、A【分析】根据题意可直接进行求解.【详解】解:由题意可列方程为;故选A.【点睛】本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键.8、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.9、A【分析】根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可.【详解】解:是方程的根,,∴故选A.【点睛】本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.10、D【分析】逐一求出四个选项中方程的根的判别式Δ的值,取其小于零的选项即可得出结论.【详解】解:A、∵Δ=(﹣2)2﹣4×1×0=4>0,∴一元二次方程有两个不相等的实数根; B、∵Δ=(﹣4)2﹣4×5×(-2)=56>0,∴一元二次方程有两个不相等的实数根;C、∵Δ=(﹣4)2﹣4×3×1=4>0,∴一元二次方程有两个不相等的实数根; D、∵Δ=(﹣3)2﹣4×4×2=-23<0,∴一元二次方程没有实数根.故选:D.【点睛】本题考查了一元二次方程根的判别式,牢记“当Δ<0时,一元二次方程没有实数根”是解题的关键.二、填空题1、5(1+x)²=6.8【分析】根据2015年及2017年的观赏人数,即可得出关于x的一元二次方程,此题得解.【详解】解:由题意得:5(1+x)²=6.8故答案为:5(1+x)²=6.8【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、-5【分析】直接利用一元二次方程的解的意义将x=1代入求出答案.【详解】解:∵关于x的一元二次方程的一个根是1,
∴12+m+4=0,
解得:m=-5.
故答案是:-5.【点睛】此题主要考查了一元二次方程的解,正确理解一元二次方程解的意义是解题关键.3、2025【分析】把代入方程可得再把化为,再整体代入求值即可.【详解】解: 是关于的方程的一个根, 故答案为:【点睛】本题考查的是方程的解,求解代数式的值,掌握“利用整体代入法求解代数式的值”是解本题的关键.4、【分析】先设增长率为x,那么第四季度的营业额可表示为200(1+x)2,已知第四季度营业额为288万元,即可列出方程,从而求解.【详解】解:设每季度的平均增长率为x,根据题意得:200(1+x)2=288,解得:x=﹣2.2(不合题意舍去),x=0.2,则每季度的平均增长率是20%.故答案为:20%【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.5、0【分析】由因式分解法解一元二次方程步骤因式分解即可求出.【详解】原式为x2=6x移项得x2-6x=0化积为x(x-6)=0转化得x=0,x-6=0解得x=0,x=6故答案为:0.【点睛】因式分解法解一元二次方程的一般步骤:移项→将方程的右边化为零;化积→把方程的左边分解为两个一次因式的积; 转化→令每个因式分别为零,转化成两个一元一次方程;求解→解这两个一元一次方程,它们的解就是原方程的解.三、解答题1、(1)3万;(2)①第40天接种完成后,B市的接种人数没有超过A市;②52天接种完成后A,B两市接种人数恰好相同.【分析】(1)根据前100天接种的总人数除以时间求解即可;(2)①将代入计算比较即可;②先由题意得到前40天市接种人数少于A市,求出40到100天间A市接种人数的函数解析式,再列等式求解问题.【详解】解:(1)(万人),∴故答案为:3万;(2)①把代入得:答:第40天接种完成后,B市的接种人数没有超过A市.②由题意前40天市接种人数少于A市,设40天到100天这段时间A市的接种人数y(万人)与接种天数x(天)的关系为,∴将(40,125)和(100,215)代入,得:,解得:,∴A市接种人数,,(舍去),答:52天接种完成后A,B两市接种人数恰好相同.【点睛】此题考查一次函数的图象和求一次函数的解析式,一元二次方程的实际应用,正确理解题意是解题的关键.2、△BPN的面积不能等于3,理由见解析【分析】如图,根据等腰直角三角形的性质和旋转性质得△BPM为△ANM绕点M逆时针旋转90°得到的,设AN=BP=x,则BN=4-x,连接NP,根据直角三角形的面积公式得到关于x的一元二次方程,然后求解即可得出结论.【详解】解:如图,∵在△ABC中,AB=BC,∠ABC=90°,M是AC的中点,∴AM=BM,BM⊥AC,∠A=∠MBC=45°,由旋转得∠NMP=90°,∴∠AMN+∠NMB=∠NMB+∠BMP,即∠AMN=∠BMP,∴△ANM≌△BPM(ASA),∴△BPM为△ANM绕点M逆时针旋转90°得到的,∴AN=BP,设AN=BP=x,则BN=4-x,连接NP,假设△BPN的面积能否等于3,则x(4-x)=3,∴x2-4x+6=0,∵△=42-4×1×6=-8<0,∴该方程无实数解,∴△BPN的面积不能等于3,【点睛】本题考查等腰三角形的性质、直角三角形斜边上的中线性质、旋转性质、全等三角形的判定与性质、等角的余角相等、三角形的面积公式、一元二次方程的应用,熟练掌握相关知识的联系与运用,证明△ANM≌△BPM是解答的关键.3、,【分析】整理成一般式后,利用配方法求解可得.【详解】.,配方,得:,开平方,得:,或,解得,所以,原方程的根为:,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4、(1),;(2),.【分析】(1)根据因式分解法解方程即可得;(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可.【详解】解:(1),,∴或,解得:,;(2),,,∴或,解得:,.【点睛】题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键.5、(1)m的值为.(2)【分析】(1)将代入原方程,即可求出m的值.(2)令根的判别式,即可求出m的取值范围.【详解】(1)解:方程有一根为 - 1,是该方程的根,,解得:,故m的值为.(2)解:方程无实数根,解得:.【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共20页。试卷主要包含了篮球队5名场上队员的身高,新型冠状病毒肺炎,为考察甲等内容,欢迎下载使用。
这是一份八年级下册第十六章 一元二次方程综合与测试随堂练习题,共16页。试卷主要包含了一元二次方程的解是.等内容,欢迎下载使用。
这是一份初中北京课改版第十六章 一元二次方程综合与测试课后作业题,共18页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。