2020-2021学年第十六章 一元二次方程综合与测试随堂练习题
展开这是一份2020-2021学年第十六章 一元二次方程综合与测试随堂练习题,共18页。试卷主要包含了一元二次方程的根的情况是,下列方程是一元二次方程的是,下列命题中,逆命题不正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )
A. B. C. D.
2、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )
A.﹣2 B.2 C.﹣4 D.4
3、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )
A.x1=0,x2=-3 B.x1=-1,x2=-4
C.x1=0,x2=3, D.x1=2,x2=-1
4、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为( )
A.20% B.30% C.40% D.50%
5、一元二次方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.无实数根
6、关于的一元二次方程的一个根是3,则的值是( )
A.3 B. C.9 D.
7、下列方程是一元二次方程的是( )
A. B.
C. D.
8、下列命题中,逆命题不正确的是( )
A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0
B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
C.全等三角形对应角相等
D.直角三角形的两条直角边的平方和等于斜边的平方
9、下列方程中,是关于x的一元二次方程是( )
A. B. C. D.
10、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,那么m=_____.
2、关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是_____.
3、智能音箱是市场上最火的智能产品之一,某商户一月份销售了100个智能音箱,三月份比一月份多销售44个,设该公司二、三月销量的月平均增长率为x,则可列方程为 _____.
4、若为整数,关于的一元二次方程有实数根,则整数的最大值为__________.
5、若关于x的方程(m+2)x|m|+2x-3=0是一元二次方程,则m=________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在∆ABC中,∠B=90°,AB=5cm,BC=7cm.动点P、Q分别从点A,B同时出发,点P以1cm/s的速度向点B移动,点Q以2cm/s的速度向点C移动.(不考虑起始位置,且点P,Q不与点A,B重合)
(1)P、Q两点出发后第几秒时,∆PBQ的面积为4cm2?
(2)P、Q两点出发后第几秒时,PQ的长度为5cm;
(3)∆PBQ的面积能否为7cm2?说明理由.
2、解方程:
(1)4(x﹣1)2=9; (2)x2+8x+15=0;
(3)25x2+10x+1=0; (4)x2﹣3x+1=0.
3、解下列方程:
(1)x2﹣2x+1=25.
(2)3x(x - 1)= 2(x - 1).
4、解方程:
(1)
(2)
5、某商城购进了一批某种品牌冰箱,标价为每台3000元.
(1)为回馈新老用户,在国庆节期间,商城对冰箱进行了连续两次降价销售,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;
(2)市场调研表明:当每台冰箱的售价为3000元时,每天能售出8台;当每台冰箱的售价每降50元时,每天就能多售出4台;若商城计划在某天销售20台冰箱,则每台冰箱的售价应定为多少元?
-参考答案-
一、单选题
1、B
【分析】
先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值.
【详解】
解:根据题意,∵,
∴,
∴,
∴
;
∵,
解得:,,
∵,
∴,
∴;
故选:B
【点睛】
本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.
2、B
【分析】
根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.
【详解】
解:∵一元二次方程x2+k﹣3=0有一个根为1,
∴将代入得,,解得:.
故选:B.
【点睛】
此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.
3、D
【分析】
首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.
【详解】
解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,
∴一元二次方程ax2+bx+c=3有一个根为1,
∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,
∴,,
∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,
∴,
∴,
∴或,
解得:.
故选:D.
【点睛】
此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.
4、C
【分析】
先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.
【详解】
解:设全市5G用户数年平均增长率为x,
根据题意,得: ,
整理得:,
∴,
解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).
故选:C.
【点睛】
本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.
5、D
【分析】
根据一元二次方程根的判别式解题.
【详解】
解:
所以此方程无解,
故选:D.
【点睛】
本题考查一元二次方程根的判别式,是重要考点,,方程有两个不相等的实数根;方程有两个相等的实数根;方程无解.
6、C
【分析】
把x=3代入已知方程,列出关于m的方程,通过解方程可以求得m的值.
【详解】
解:关于的一元二次方程的一个根是3
m=9
故选:C
【点睛】
本题考查了一元二次方程的解的定义,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
7、C
【分析】
判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
【详解】
A.有两个未知数,错误;
B.不是整式方程,错误;
C.符合条件;
D.化简以后为,不是二次,错误;
故选:C.
【点睛】
本题考查一元二次方程的定义.根据一元二次方程的定义,一元二次方程有三个特点:
(1)只含有一个未知数;
(2)未知数的最高次数是2;
(3)是整式方程.
8、C
【分析】
分别写出各个命题的逆命题,然后判断正误即可.
【详解】
解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;
B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;
C.逆命题为:对应角相等的两三角形全等,错误,符合题意;
D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.
故选:C
【点睛】
本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.
9、C
【分析】
根据只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程选择即可.
【详解】
A.当a=0时,是一元一次方程,该选项不符合题意;
B.分母上有未知数,是分式方程,该选项不符合题意;
C.是关于x的一元二次方程,该选项符合题意;
D.经整理后为,是一元一次方程,该选项不符合题意.
故选择C.
【点睛】
本题考查识别一元二次方程,理解一元二次方程的定义是解答本题的关键.
10、C
【分析】
根据增长率的意义,列式即可.
【详解】
设这个增长率为,
根据题意,得,
故选C.
【点睛】
本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.
二、填空题
1、1
【分析】
由题意根据判别式的意义得到Δ=(﹣2)2﹣4×1×m=0,然后求解关于m的方程即可.
【详解】
解:根据题意得Δ=(﹣2)2﹣4×1×m=0,
解得m=1.
故答案为:1.
【点睛】
本题考查根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
2、且
【详解】
利用判别式,根据一元二次方程的定义,列出不等式即可解决问题;
【分析】
解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,
∴△≥0且k≠0,
∴9+4k≥0,
∴k≥﹣,且k≠0,
故答案为k≥﹣且k≠0.
【点睛】
本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.
3、100(1+x)2=144.
【分析】
设该公司二、三月销量的月平均增长率为x,利用增长率表示三月销量100(1+x)2,列方程即可.
【详解】
解:设该公司二、三月销量的月平均增长率为x,
则可列方程为100(1+x)2=100+44,
即100(1+x)2=144,
故答案为:100(1+x)2=144.
【点睛】
本题考查一元二次方程解增长率问题应用题,掌握一元二次方程解增长率问题应用题方法与步骤,抓住等量关系利用增长率表示三月销售智能音箱100(1+x)2与100+44相等列方程是解题关键.
4、3
【分析】
根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案.
【详解】
解:由题意得:,
解得,且,
为整数,
整数的最大值为3,
故答案为:3.
【点睛】
本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键.
5、2
【分析】
只含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程,根据定义解答.
【详解】
解:由题意得,
解得m=2,
故答案为:2.
【点睛】
此题考查了一元二次方程的定义,熟记定义并应用解决问题是解题的关键.
三、解答题
1、(1)1秒后,△PBQ的面积等于4cm2;(2)2秒后,PQ的长度等于5cm;(3)△PBQ的面积不能等于7cm2.理由见解析
【分析】
(1)根据题意表示出BP、BQ的长,再根据三角形的面积公式列方程即可;
(2)根据题意表示出BP、BQ的长,再根据勾股定理列方程即可;
(3)根据三角形的面积公式,列出方程,再利用判别式,即可求解.
【详解】
解:根据题意,知
BP=AB-AP=5-t,BQ=2t.
(1)设t秒后,△PBQ的面积等于4cm2,
根据三角形的面积公式,得
PB•BQ=4,
t(5-t)=4,
t2-5t+4=0,
解得t=1秒或t=4秒(舍去).
故1秒后,△PBQ的面积等于4cm2;
(2)设t秒后,PQ的长度等于5cm,根据勾股定理,得
PQ2=BP2+BQ2=(5-t)2+(2t)2=25,
5t2-10t=0,
∵t≠0,
∴t=2.
故2秒后,PQ的长度等于5cm;
(3)根据三角形的面积公式,得
PB•BQ=7,
t(5-t)=7,
t2-5t+7=0,
△=(-5)2-4×1×7=-3<0.
故△PBQ的面积不能等于7cm2.
【点睛】
本题考查了一元二次方程的应用,此题要能够正确找到点所经过的路程,熟练运用勾股定理和直角三角形的面积公式列方程求解.
2、(1),;(2),;(3);(4),.
【分析】
(1)先变形,然后运用直接开方法求解即可;
(2)直接应用因式分解法求解即可;
(3)将其变形为完全平方式,然后运用直接开方法即可得;
(4)直接运用公式法求解即可得.
【详解】
解:(1)方程变形得:,
开方得:,
解得:,;
(2)分解因式得:,
可得或,
解得:,;
(3)方程变形得:,
解得:;
(4)这里,,,
∵,
∴
∴,.
【点睛】
题目主要考查解一元二次方程的方法:直接开方法、因式分解法、公式法,熟练掌握运用解方程的方法是解题关键.
3、(1),;(2),
【分析】
(1)利用直接开方法解方程即可;
(2)利用提取公因式法解方程即可.
【详解】
解:(1),
,
∴,
;
(2)3x(x-1)=2(x-1),
3x(x-1)-2(x-1)=0,
(x-1)(3x-2)=0,
∴x-1=0或3x-2=0,
∴x1=1,.
【点睛】
本题主要考查了解一元二次方程的方法,准确计算是解题的关键.
4、(1);(2)
【分析】
(1)根据公式法解一元二次方程即可;
(2)根据因式分解法解一元二次方程即可
【详解】
解:(1)
(2)
即或
【点睛】
本题考查了解一元二次方程,熟练掌握解一元二次方程的解法是解题的关键.
5、(1)每次降价的百分率是10%;(2)定价为2850元.
【分析】
(1)设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x)元,第二次后的价格是60(1﹣x)2元,据此即可列方程求解;
(2)假设下调a个50元,销售冰箱数量=原销售量+多售出量,即可列方程求解.
【详解】
解:(1)设每次降价的百分率为x,
依题意得:3000(1﹣x)2=2430,
解得x1=0.1=10%,x2=1.9(不合题意,舍去)
答:每次降价的百分率是10%;
(2)假设下调a个50元,依题意得:20=8+4a.
解得a=3.
所以下调150元,因此定价为3000-150=2850元.
【点睛】
本题主要考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.
相关试卷
这是一份北京课改版第十六章 一元二次方程综合与测试综合训练题,共17页。试卷主要包含了已知方程的两根分别为m,一元二次方程x2﹣x=0的解是,方程x2﹣x=0的解是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题,共17页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共18页。试卷主要包含了一元二次方程根的情况是,一元二次方程的二次项系数等内容,欢迎下载使用。