初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共20页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有( )A.32人 B.40人 C.48人 D.50人2、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( ) 甲乙丙丁 方差3.63.244.3A.甲组 B.乙组 C.丙组 D.丁组3、在频数分布直方图中,下列说法正确的是( )A.各小长方形的高等于相应各组的频率B.各小长方形的面积等于相应各组的频数C.某个小长方形面积最小,说明落在这个组内的数据最多D.长方形个数等于各组频数的和4、某体育场大约能容纳万名观众,在一次足球比赛中,上座率为.估一估,大约有多少名观众观看了比赛?( )A. B. C.5、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )A.0和2 B.0和 C.0和1 D.0和06、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名选手的射击环数,下列说法不正确的是( )A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.27、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )
A.90分以上的学生有14名 B.该班有50名同学参赛C.成绩在70~80分的人数最多 D.第五组的百分比为16%8、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是69、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )A.平均数是89 B.众数是93C.中位数是89 D.方差是2.810、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A.平均数、中位数和众数都是3B.极差为4C.方差是D.标准差是第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某班级有45名学生在期中考试学情分析中,分数段在70~79分的频率为0.4,则该班级在这个分数段内的学生有 _____人.2、某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55135149191乙55135151110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).3、若整数1至50的方差为,整数51至100的方差为,则与的大小关系是__________.4、某果农随机从甲、乙、丙三个品种的批把树中各选5棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如表所示,他准备从这三个品种中选出一种产量既高又稳定的批把树进行种植,则应选的品种是 __. 甲乙丙454542S21.82.31.8 5、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.三、解答题(5小题,每小题10分,共计50分)1、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.整理数据: 80859095100七年级22321八年级124a1分析数据: 平均数中位数众数方差七年级8990e八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过计算求出e的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这两个年级共多少名学生达到“优秀”?2、为了秉承“弘扬剪纸非遗文化,增强校园文化底蕴”的宗旨,某校邀请剪纸艺术工作室开设剪纸小课堂并举行剪纸比赛,比赛结束后从中随机抽取了20名学生的剪纸比赛成绩x,收集数据如下:成绩(分)人数(人)6554根据以上信息,解答下列问题:(1)成绩这一段的人数占被抽取总人数的百分比为_____________;(2)若本次共有260名学生参加比赛,请估计剪纸比赛成绩不低于70分的学生人数.3、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:请根据图中提供的信息,完成下列问题:(1)在这次调查中,一共抽查了 名学生;(2)“羽毛球”部分的学生有 人,并补全统计图;(3)“足球”部分所对应的圆心角为 度;(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?4、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查.两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示.将以上信息整理分析如下: 平均数中位数众数方差甲公司a7cd乙公司7b57.6(1)填空:a=_____;b=_____;c=_____;d=_____;(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.5、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955乙组成绩统计图
根据上面的信息,解答下列问题:(1)甲组的平均成绩为______分,______,甲组成绩的中位数是______,乙组成绩的众数是______;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定? -参考答案-一、单选题1、D【分析】根据频率=频数总数,求解即可.【详解】解:根据频率=频数总数,即总数=频数频率,则参加比赛的同学共有40÷0.8=50(人),故选:D.【点睛】本题考查了频数与频率,记住公式:频率=频数总数是解题的关键.2、B【分析】由平均数相同,根据方差越小越稳定可得出结论.【详解】解:∵4.3>4>3.6>3.2∴,∵四个小组的平均分相同,∴乙组各成员实力更平均,选择乙组代表年级参加学校决赛.故选择B.【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.3、B【分析】根据频数直方图的定义逐一判断即可得答案.【详解】在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确, 在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,故选:B.【点睛】本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.4、B【分析】根据体育场的容量×上座率计算即可.【详解】解:∵某体育场大约能容纳万名观众,上座率为.∴观众观看这一次足球比赛人数为:30000×68%=20400人,与20000接近.故选:B.【点睛】本题考查频数频率与总数的关系,掌握频数=总数×频率是解题关键.5、A【分析】根据平均数公式与方差公式计算即可.【详解】解:,.故选择A.【点睛】本题考查平均数与方差,掌握平均数与方差公式是解题关键.6、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案.【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为;平均数为,方差为,故选:B.【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.7、A【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在70~80分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.8、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.9、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为,故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.10、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;S=,因此D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.二、填空题1、18【分析】根据频数总数×频率,直接求解即可.【详解】依题意该班级在在70~79分数段内的学生有(人).故答案为:18.【点睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键.2、①②③【分析】根据中位数,平均数和方差的意义,逐一判断即可.【详解】解:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.故答案是:①②③.【点睛】本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键.3、【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:整数51至100是整数1至50的每一个数都加上50所得,一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,波动程度不变,方差不变,则.故答案为:.【点睛】本题考查方差的意义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.4、甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.5、50 0.16 【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可.【详解】依题意(人)故答案为:【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.三、解答题1、(1)a=2,b=90,c=90,d=90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人【分析】(1)通过八年级抽取人数10人,即可得到a,根据中位数、平均数、众数的定义得到b、c、d;(2)根据方差的计算公式,求解即可;(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.【详解】解:(1)观察八年级95分的有2人,故a=2;七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100,七年级的中位数为,故b=90;八年级的平均数为:,故c=90;八年级中90分的最多,故d=90;(2)七年级的方差;(3)八年级的学生成绩好,理由如下:七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;(4)∵(人),∴估计该校七、八年级这次竞赛达到优秀的有1040人.【点睛】本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.2、(1);(2)182人.【分析】(1)由题意根据图表得出成绩这一段的人数,进而除以抽取总人数即可得到答案;(2)根据题意先得出抽取的成绩不低于70分的学生人数并得出其所占百分比,进而乘以260即可得出答案.【详解】解:(1)根据图表可得成绩这一段的人数为:6人,所以成绩这一段的人数占被抽取总人数的百分比为:,故答案为:;(2)根据图表可得成绩不低于70分的学生人数为:(人),所以剪纸比赛成绩不低于70分的学生人数为:(人).答:剪纸比赛成绩不低于70分的学生人数有182人.【点睛】本题考查数据的分析与处理,熟练掌握用样本估计总体的统计思想方法是解题的关键.3、(1);(2);作图见解析;(3);(4)【分析】(1)篮球人数为,占总人数的,可以得到调查学生总人数;(2)羽毛球部分的学生占总人数的,可得到羽毛球部分的学生人数;(3)足球部分为人,占总人数的,占圆心角的,可得到足球部分对应圆心角的大小;(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.【详解】解(1)设调查学生总人数为则有解得故答案为.(2)羽毛球部分的学生占总人数的,羽毛球的人数为故答案为.统计图补充如图所示:(3)由图知足球部分的人数为足球部分占总人数的足球部分对应圆心角的大小为故答案为.(4)跳绳人数占比为该校喜欢跳绳的人数有(人);答:该校有240名学生喜欢跳绳【点睛】本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.4、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析.【分析】(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可.【详解】解:(1)甲公司平均月收入:a={5+6+7×4+8×2+9×[10×(1﹣10%﹣10%﹣40%﹣20%)]}=7.3(千元);乙公司滴滴中位数为b==5.5(千元);甲公司众数c=7(千元);甲公司方差:d=[4×(7﹣7.3)2+2×(8﹣7.3)2+2×(9﹣7.3)2+(5﹣7.3)2+(6﹣7.3)2]=1.41;故答案为:7.3,5.5,7,1.41;(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司方差小,更稳定.【点睛】本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键.5、(1)8.7,3,8.5,8;(2)乙组成绩的方差为0.75,乙组的成绩更加稳定.【分析】(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案.【详解】解:(1)平均成绩为:,,甲组成绩一共有20人,从小到大最中间为8和9,则中位数为,乙组成绩中出现次数最多的为8,则众数为8,故答案为:8.7,3,8.5,8;(2),,,∴,∴乙组的成绩更加稳定.【点睛】题目主要考查平均数、中位数、众数的定义、方差的算法及数据的稳定性判断,理解定义及方差的算法是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共20页。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试一课一练,共21页。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试精练,共21页。试卷主要包含了下列一组数据等内容,欢迎下载使用。