![2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布达标测试练习题(精选)第1页](http://www.enxinlong.com/img-preview/2/3/12703404/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布达标测试练习题(精选)第2页](http://www.enxinlong.com/img-preview/2/3/12703404/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布达标测试练习题(精选)第3页](http://www.enxinlong.com/img-preview/2/3/12703404/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十七章 方差与频数分布综合与测试课后作业题
展开这是一份2021学年第十七章 方差与频数分布综合与测试课后作业题,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组.
A.10 B.9 C.8 D.7
2、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )
A.众数 B.中位数 C.平均数 D.方差
3、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
4、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是( )
A.平均数 B.中位数 C.众数 D.方差
5、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )
周阅读用时数(小时) | 4 | 5 | 8 | 12 |
学生人数(人) | 3 | 4 | 2 | 1 |
A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是6
6、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶,出现一次故障”是随机事件
C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨
D.若两组数据的平均数相同,则方差大的更稳定
7、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )
A.平均数、中位数和众数都是3
B.极差为4
C.方差是
D.标准差是
8、在对一组样本数据进行分析时,小华列出了方差的计算公式S2=,下列说法错误的是( )
A.样本容量是5 B.样本的中位数是4
C.样本的平均数是3.8 D.样本的众数是4
9、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )
A.平均数 B.中位数 C.方差 D.众数
10、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )
| 甲 | 乙 | 丙 | 丁 |
平均数/m | 180 | 180 | 185 | 185 |
方差 | 8.2 | 3.9 | 75 | 3.9 |
A.甲 B.乙 C.丙 D.丁
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是 _____(填“甲”或“乙”).
2、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.
3、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.
| 甲 | 乙 | 丙 |
44 | 44 | 42 | |
1.7 | 1.5 | 1.7 |
4、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.
5、已知一组数据a、b、c、d、e的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.
三、解答题(5小题,每小题10分,共计50分)
1、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷, 随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题:
(1) 这次活动共调查了_______人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______;
(2)请将条形统计图补充完整;
(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?
(4)根据上图, 你可以获得什么信息?
2、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:
(1)本次调查的学生共有多少人;
(2)请将条形统计图和扇形统计图补充完整;
(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?
3、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,一共抽查了多少名学生;
(2)请将统计图②补充完整;
(3)如果全校有3600名学生,请问全校学生中,最喜欢“踢毽”活动的学生约有多少人.
4、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:
(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)
七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82
八年级10名学生的成绩在C组中的数据是:94,90,92
七、八年级抽取的学生竞赛成绩统计表
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | b | c | d | 52 |
八年级 | 92 | 93 | 100 | 50.4 |
根据以上信息,解答下列问题:
(1)这次比赛中 年级成绩更平衡,更稳定;
(2)直接写出上述a、b、c的值:a= ,b= ,c= ;d=
(3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的人数
5、某校随机抽取部分学生,对“学习习惯”进行问卷调查.设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A.很少;B.有时;C.常常;D.总是.将调查结果的数据进行了整理、绘制成如图两幅不完整的统计图.
请根据图中信息,解答下列问题:
(1)填空:a= %,b= %;
(2)请你补全条形统计图;
(3)若该校有2000名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生各有多少名?
-参考答案-
一、单选题
1、A
【分析】
求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
【详解】
解:145-50=95,
95÷10=9.5,
所以应该分成10组.
故选A.
【点睛】
本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
2、D
【分析】
根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解
【详解】
解:由题意得:
原中位数为3,原众数为3,原平均数为3,原方差为1.8;
去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;
∴统计量发生变化的是方差;
故选D
【点睛】
本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.
3、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
4、B
【分析】
根据中位数不受极端值的影响即可得.
【详解】
解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,
故选B.
【点睛】
本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.
5、D
【分析】
根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.
【详解】
解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.
【点睛】
本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
6、B
【分析】
根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.
【详解】
解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;
B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;
C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;
D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;
故选:B.
【点睛】
此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.
7、D
【分析】
分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.
【详解】
解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;
极差为5﹣1=4,B选项不符合题意;
S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;
S=,因此D选项符合题意,
故选:D.
【点睛】
考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.
8、D
【分析】
先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.
【详解】
解:
由方差的计算公式得:这组样本数据为,
则样本的容量是5,选项A正确;
样本的中位数是4,选项B正确;
样本的平均数是,选项C正确;
样本的众数是3和4,选项D错误;
故选:D.
【点睛】
题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.
9、B
【分析】
根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案
【详解】
根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,
故选B
【点睛】
本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.
10、D
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵,
∴从丙和丁中选择一人参加比赛,
∵S丙2>S丁2,
∴选择丁参赛,
故选:D.
【点睛】
此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
二、填空题
1、乙
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=1.4,S乙2=0.2,
∴S乙2<S甲2,
∴两人成绩比较稳定的是乙,
故答案为:乙.
【点睛】
本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
2、20
【分析】
根据频数等于总数乘以频率,即可求解.
【详解】
解:调查的居民超出了标准量的有 户.
故答案为:20.
【点睛】
本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键.
3、乙
【分析】
先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.
【详解】
解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,
又乙的方差比甲小,所以乙的产量比较稳定,
即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;
故答案为:乙.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.
4、
【分析】
结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.
【详解】
∵1,a,3,6,7,它的平均数是5
∴
∴
∴这组数据的方差是:
故答案为:.
【点睛】
本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.
5、
【分析】
根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.
【详解】
解:∵数据a、b、c、d、e的方差是1.2,
∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.
故答案为:4.8.
【点睛】
本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.
三、解答题
1、(1)200;;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一
【分析】
(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;
(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;
(4)信息合理即可.
【详解】
(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,
表示“支付宝”支付的扇形圆心角的度数为:360°×=81°,
故答案为:200,81°;
(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,
补充完整的条形统计图如图所示:
(3).
答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.
(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
2、(1)人;(2)画图见解析;(3)人
【分析】
(1)由喜欢足球的有100人,占比25%,列式,再计算即可得到答案;
(2)分别求解喜欢排球的占比为: 喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,再补全图形即可;
(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.
【详解】
解:(1)由喜欢足球的有100人,占比25%,可得:
本次调查的学生共有人,
(2)喜欢排球的占比为:
所以喜欢篮球的占比为:
喜欢篮球的人数为:人,
喜欢乒乓球的人数有:人,
所以补全图形如下:
(3)该学校共有学生2000人,则选择足球运动的同学有:
人.
【点睛】
本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.
3、(1)200人;(2)见解析;(3)人
【分析】
(1)根据喜欢“球类”的人数以及百分比,求解即可;
(2)根据总人数,求得跳绳的人数,补全统计图即可;
(3)求得“踢毽”活动的百分比,即可求解;
【详解】
解:(1)从统计图中可以得到喜欢“球类”的人数为80人,所占百分比为,
则总人数为人,
故答案为200人
(2)喜欢“跳绳”的人数有人,补全统计图,如下:
(3)最喜欢“踢毽”活动的学生约为人,
故答案为人
【点睛】
此题考查了统计的基本知识,涉及了计算样本容量,统计图以及根据样本估算总体,解题的关键是读懂统计图,从统计图中获取有关数据.
4、(1)八;(2)40;91.4;93;96;(3)840人
【分析】
(1)根据方差的意义求解即可;
(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;
(3)用总人数乘以样本中成绩优秀(x≥90)的八年级学生人数对应的百分比即可.
【详解】
(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,
∴八年级成绩的方差小于七年级成绩的方差,
∴八年级成绩更平衡,更稳定;
故答案为:八;
(2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,
∴a%=1-(20%+10%+30%)=40%,即a=40;
七年级的平均数=
将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,
则这组数据的中位数
七年级的成绩中96出现次数最多,所以众数d=96,
故答案为:40;91.4;93;96;
(3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1-20%-10%)=840(人).
【点睛】
考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键.
5、(1)12,36;(2)见解析;(3)720人
【分析】
(1)首先计算出抽查的学生总数,然后再计算a、b的值即可;
(2)计算出“常常”所对的人数,然后补全统计图即可;
(3)利用样本估计总体的方法计算即可.
【详解】
解:(1)调查总人数:(人),
,
,
故答案为:12,36;
(2)“常常”所对的人数:200×30%=60(人),
补全统计图如图所示:
;
(3)2000×30%=600(人),
2000×36%=720(人),
答:“常常”对错题进行整理、分析、改正的有600人,“总是”对错题进行整理、分析、改正的有720人.
【点睛】
本题考查条形统计图与扇形统计图的综合运用,熟练掌握抽样的各项数目、各项百分比、总数、各项圆心角及整体的各项数目、各项百分比、总数等的计算方法是解题关键.
相关试卷
这是一份数学八年级下册第十七章 方差与频数分布综合与测试练习题,共20页。试卷主要包含了在一次射击训练中,甲等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题,共19页。试卷主要包含了为考察甲等内容,欢迎下载使用。
这是一份2021学年第十七章 方差与频数分布综合与测试课时练习,共19页。