数学第十七章 方差与频数分布综合与测试精练
展开京改版八年级数学下册第十七章方差与频数分布定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
平均数 | 90 | 95 | 95 | 90 |
方差 | 32 | 32 | 44 | 49 |
A.甲 B.乙 C.丙 D.丁
2、在2020东京奥运会女子10米气步枪的项目中,杨倩以251.8环的好成绩一举夺冠,为中国体育代表团斩获奥运首金.现将决赛淘汰阶段中国选手杨倩每一轮(两轮之和)的数据进行汇总,并进行一定的数据处理作出以下表格.
姓名 | 第1轮 | 第2轮 | 第3轮 | 第4轮 | 第5轮 | 第6轮 | 第7轮 | 总计 |
杨倩 | 20.9 | 21.7 | 21.0 | 20.6 | 21.1 | 21.3 | 20.5 | 147.1 |
根据表格信息可以得到杨倩在决赛淘汰阶段成绩的极差和中位数分别为多少( )
A.1.1,20.6 B.1.2,20.6 C.1.2,21.0 D.1.1,21.3
3、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )
A.由这两个统计图可知喜欢“科普常识”的学生有90人
B.若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个
C.由这两个统计图不能确定喜欢“小说”的人数
D.在扇形统计图中,“漫画”所在扇形的圆心角为
4、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ).
A.4 B.5 C.6 D.7
5、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是( )
A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.4
6、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是( )
A.甲. B.乙 C.丙 D.丁
7、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是( )
居民(户) | 5 | 3 | 3 | 4 |
月用电量(度/户) | 30 | 42 | 50 | 51 |
A.平均数是43.25 B.众数是30
C.方差是82.4 D.中位数是42
8、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( )
| 参加人数 | 平均数 | 中位数 | 方差 |
甲 | 40 | 95 | 93 | 5.1 |
乙 | 40 | 95 | 95 | 4.6 |
A.甲班的成绩比乙班的成绩稳定
B.甲班成绩优异的人数比乙班多
C.甲,乙两班竞褰成绩的众数相同
D.小明得94分将排在甲班的前20名
9、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )
A.0和2 B.0和 C.0和1 D.0和0
10、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据的极差是8,则另一组数据的极差是_______.
2、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)
3、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.
4、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.
5、已知一组数据,,,它们的平均数是,则______,这一组数据的方差为______.
三、解答题(5小题,每小题10分,共计50分)
1、在疫情防控期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们志愿服务的时间进行了统计,整理并绘制成如下的统计表和不完整的统计图.
A | a | |
B | 10 | |
C | 16 | |
D | 20 |
(1)本次被抽取的教职工共有 名;
(2)表中a = ,扇形统计图中“C”部分所占百分比为 %;
(3)若该市共有30 000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?
2、在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大,说明数据的离散程度越大.
(1)分别计算下列两组数据的“平均差”,并根据计算结果比较这两组数据的稳定性;
甲:9,11,8,12,7,13,6,14,10,10.
乙:8,9,10,11,7,12,9,11,10,13.
(2)分别计算甲、乙两组数据的方差,并根据计算结果比较这两组数据的稳定性.
3、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).
收集数据:
七年级:90,95,95,80,85,90,80,90,85,100;
八年级:85,85,95,80,95,90,90,90,100,90.
整理数据:
| 80 | 85 | 90 | 95 | 100 |
七年级 | 2 | 2 | 3 | 2 | 1 |
八年级 | 1 | 2 | 4 | a | 1 |
分析数据:
| 平均数 | 中位数 | 众数 | 方差 |
七年级 | 89 | 90 | e | |
八年级 | c | 90 | d | 30 |
根据以上信息回答下列问题:
(1)请直接写出表格中a,b,c,d的值;
(2)通过计算求出e的值;
(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;
(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这两个年级共多少名学生达到“优秀”?
4、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查.两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示.
将以上信息整理分析如下:
| 平均数 | 中位数 | 众数 | 方差 |
甲公司 | a | 7 | c | d |
乙公司 | 7 | b | 5 | 7.6 |
(1)填空:a=_____;b=_____;c=_____;d=_____;
(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.
5、学校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图:
(1)此次共调查了多少人?
(2)通过计算将条形统计图补充完整;
(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?
-参考答案-
一、单选题
1、B
【分析】
此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.
【详解】
解:由于乙的方差较小、平均数较大,故选乙.
故选:B.
【点睛】
本题考查了平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、C
【分析】
根据极差和中位数的求解方法,求解即可,极差是一组数据中最大数减去最小数,中位数为是指一组数据从小到大排列,位于中间的那个数,数据个数为奇数时,中位数为中间的数,数据个数为偶数时,中位数为中间两数的平均值.
【详解】
解:成绩从小到大依次为:、、、、、、
极差为
中位数为
故选:C
【点睛】
此题考查了极差和中位数的计算,解题的关键是掌握极差和中位数的有关概念.
3、C
【分析】
根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项.
【详解】
A.喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;
C.喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.
D.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;
故选C.
【点睛】
本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
4、C
【分析】
根据组数=(最大值-最小值)÷组距计算即可.
【详解】
解:∵在样本数据中最大值与最小值的差为35-15=20,
又∵组距为4,
∵20÷4=5,
∴应该分成5+1=6组.
故选:C.
【点睛】
本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.
5、D
【分析】
根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得
【详解】
依题意,成绩分式为整数,则大于80.5的频数为5+3=8,
学生总数为.
则频率为.
故选D.
【点睛】
本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.
6、A
【分析】
根据方差的意义,即可求解.
【详解】
解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75
∴
∴成绩最稳定的是甲
故选A
【点睛】
此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.
7、A
【分析】
根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.
【详解】
解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,
平均数为×(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)=42,
中位数为42;
众数为30,
方差为 ×[5×(30﹣42)2+3×(42﹣42)2+3×(50﹣42)2+4×(51﹣42)2]=82.4.
故B、C、D正确.
故选:A.
【点睛】
本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键.
8、D
【分析】
分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.
【详解】
A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;
B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;
C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;
D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;
故选:D.
【点睛】
本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.
9、A
【分析】
根据平均数公式与方差公式计算即可.
【详解】
解:,
.
故选择A.
【点睛】
本题考查平均数与方差,掌握平均数与方差公式是解题关键.
10、C
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
二、填空题
1、16
【分析】
因为x1,x2,x3,…,xn的极差是8,设xn-x1=8,则2x1+1,2x2+1,2x3+1,…,2xn+1极差为2(xn-x1).
【详解】
解:∵x1,x2,x3,…,xn的极差是8,不妨设xn-x1=8,
∴2x1+1,2x2+1,2x3+1,…,2xn+1极差为2(xn-x1)=2×8=16.
故答案为:16.
【点睛】
本题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.
2、变大
【分析】
先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.
【详解】
解:∵李强再跳两次,成绩分别为7.6,8.0,
∴这组数据的平均数是,
∴这8次跳远成绩的方差是:
∵0.0225>,
∴方差变大;
故答案为:变大.
【点睛】
本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键.
3、15
【分析】
由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.
【详解】
解:设盒子中白球大约有个,
根据题意,得:,
解得,
经检验是分式方程的解,
所以估计盒子中白球大约有15个,
故答案为:15.
【点睛】
本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
4、300
【分析】
设池塘大约有x只,根据题意,得到,计算即可.
【详解】
设池塘大约有x只,根据题意,得到
,
解得 x=300,
经检验,x=300是原方程的根,
故答案为:300.
【点睛】
本题考查了分式方程的应用,正确列出分式方程是解题的关键.
5、,
【分析】
先根据平均数的定义确定出的值,再根据方差的计算公式计算即可.
【详解】
解:数据 的平均数是,
,
,
这组数据的方差是:,
故答案为:2,.
【点睛】
此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
三、解答题
1、(1)50;(2)4,32;(3)21600
【分析】
(1)由B等级的人数及其所占百分比即可求出被调查的总人数;
(2)用总人数减去B、C、D的人数即可得出a的值,用C等级人数除以被调查总人数即可得出其对应百分比;
(3)用总人数乘以样本中C、D人数所占比例即可.
【详解】
解:(1)本次被抽取的教职工共有10÷20%=50(名),
故答案为:50;
(2)a=50−(10+16+20)=4,
扇形统计图中“C”部分所占百分比为×100%=32%,
故答案为:4,32;
(3)志愿服务时间多于60小时的教职工大约有30000×=21600(人).
【点睛】
此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息.
2、(1)T甲=2,T乙=1.4,乙组数据更稳定;(2)=6,=3,乙组数据更稳定
【分析】
(1)先求出甲乙两组的平均数,再利用平均差公式求出甲乙两组的平均差,再比较大小即可;
(2)根据方差公式求甲乙两组的方差,再比较大小即可.
【详解】
解:(1)∵,
∴…,
∵,
∴…,
∴,
∴乙组数据更稳定;
(2)∵,
,
,
∴乙组数据更稳定.
【点睛】
本题考查平均数,新定义平均差,方差,掌握平均数,新定义平均差,方差是解题关键.
3、(1)a=2,b=90,c=90,d=90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人
【分析】
(1)通过八年级抽取人数10人,即可得到a,根据中位数、平均数、众数的定义得到b、c、d;
(2)根据方差的计算公式,求解即可;
(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;
(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.
【详解】
解:(1)观察八年级95分的有2人,故a=2;
七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100,
七年级的中位数为,故b=90;
八年级的平均数为:,故c=90;
八年级中90分的最多,故d=90;
(2)七年级的方差;
(3)八年级的学生成绩好,理由如下:
七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,
综上,八年级的学生成绩好;
(4)∵(人),
∴估计该校七、八年级这次竞赛达到优秀的有1040人.
【点睛】
本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.
4、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析.
【分析】
(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;
(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可.
【详解】
解:(1)甲公司平均月收入:a={5+6+7×4+8×2+9×[10×(1﹣10%﹣10%﹣40%﹣20%)]}=7.3(千元);
乙公司滴滴中位数为b==5.5(千元);
甲公司众数c=7(千元);
甲公司方差:d=[4×(7﹣7.3)2+2×(8﹣7.3)2+2×(9﹣7.3)2+(5﹣7.3)2+(6﹣7.3)2]=1.41;
故答案为:7.3,5.5,7,1.41;
(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司方差小,更稳定.
【点睛】
本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键.
5、(1)200人;(2)画图见解析;(3)600人
【分析】
(1)由喜欢体育类的有80人,占比40%,再列式计算即可;
(2)先分别求解喜欢其它与喜欢艺术的人数,再补全图形即可;
(3)由总人数乘以样本中喜欢体育类的占比即可得到答案.
【详解】
解:(1)由喜欢体育类的有80人,占比40%,可得
此次共调查人
(2)由喜欢文学的有60人,则占比:
所以喜欢其它的占比:
则有:人,
喜欢艺术的有:人,
补全图形如下:
(3)该校有1500名学生,喜欢体育类社团的学生有:
人.
【点睛】
本题考查的是从条形图与扇形图中获取信息,补全条形统计图,利用样本估计总体,掌握“获取条形图与扇形图的互相关联的信息”是解本题的关键.
数学北京课改版第十七章 方差与频数分布综合与测试当堂达标检测题: 这是一份数学北京课改版第十七章 方差与频数分布综合与测试当堂达标检测题,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。
数学第十七章 方差与频数分布综合与测试巩固练习: 这是一份数学第十七章 方差与频数分布综合与测试巩固练习,共23页。
北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题,共20页。试卷主要包含了在一次射击训练中,甲等内容,欢迎下载使用。