北京课改版八年级下册第十七章 方差与频数分布综合与测试课时训练
展开
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课时训练,共20页。试卷主要包含了某校八年级人数相等的甲,在一次射击训练中,甲,一组数据a-1等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在频数分布直方图中,下列说法正确的是( )A.各小长方形的高等于相应各组的频率B.各小长方形的面积等于相应各组的频数C.某个小长方形面积最小,说明落在这个组内的数据最多D.长方形个数等于各组频数的和2、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )
A.90分以上的学生有14名 B.该班有50名同学参赛C.成绩在70~80分的人数最多 D.第五组的百分比为16%3、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A.平均数 B.中位数 C.方差 D.众数4、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )甲26778乙23488A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差5、某体育场大约能容纳万名观众,在一次足球比赛中,上座率为.估一估,大约有多少名观众观看了比赛?( )A. B. C.6、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,,,则成绩波动最小的班级( )A.甲 B.乙 C.丙 D.无法确定7、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )A.乙比甲稳定 B.甲比乙稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比8、已知一组数据﹣1,2,0,1,﹣2,那么这组数据的方差是( )A.10 B.4 C.2 D.0.29、一组数据a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是( )A.2m-3、2n-3 B.2m-1、4n C.2m-3、2n D.2m-3、4n10、某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中不合格产品约为( )A.50件 B.500件 C.5000件 D.50000件第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数据6,3,9,7,1的极差是_________.2、一个样本的方差,则样本容量是_________,样本平均数是__________.3、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.4、某科研小组为了考查A区域河流中野生鱼的数量,从中捕捞200条,作上标记后,放回河中,经过一段充足的时间后,再从中抽捞出300条,发现有标记的鱼有15条,则估计A区域河流中野生鱼有____条.5、阅读下列材料:为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下:甲76849086818786828583乙82848589798091897479回答下列问题:(1)甲成绩的平均数是_______,乙成绩的平均数是_______.(2)经计算知,这表明______(用简明的文字语言表述).(3)你认为选谁去参加比赛更合适?________,理由是_________.三、解答题(5小题,每小题10分,共计50分)1、为了让青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼.我校启动了“学生阳光体育短跑运动”,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格:次数12345小明的成绩(秒)13.313.413.3______13.3小亮的成绩(秒)13.2______13.113.513.3(2)请写出小明的成绩的中位数和众数,小亮成绩的中位数;(3)分别计算他们成绩的平均数和方差,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?2、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的折线统计图如下:(1) 请补充完成下面的成绩统计分析表: 平均分方差中位数合格率优秀率甲组( )3.76( )90%30%乙组7.2( )7.580%20%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组;但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.3、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查.学生睡眠时长记为x小时,将所得数据分为5组(A:;B:;C:;D:;E:),学校将所得到的数据进行分析,得到如下部分信息:请你根据以上信息,回答下列问题:(1)直接写出a的值;(2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人?4、由重庆市教育委员会主办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m= ,补全条形统计图;(2)各组得分的中位数是 分,众数是 分;(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?5、为了迎接2022年高中招生考试,师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:(1)在这次调查中,被抽取的学生的总人数为多少?(2)请将表示成绩类别为“中”的条形统计图补充完整:(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是 .(4)学校八年级共有400人参加了这次数学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”? -参考答案-一、单选题1、B【分析】根据频数直方图的定义逐一判断即可得答案.【详解】在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确, 在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,故选:B.【点睛】本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.2、A【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在70~80分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.3、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.4、D【分析】根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.【详解】解:A.甲的众数为7,乙的众数为8,故此项错误;B.甲的中位数为7,乙的中位数为4,故此项错误;C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;故选:D.【点睛】此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.5、B【分析】根据体育场的容量×上座率计算即可.【详解】解:∵某体育场大约能容纳万名观众,上座率为.∴观众观看这一次足球比赛人数为:30000×68%=20400人,与20000接近.故选:B.【点睛】本题考查频数频率与总数的关系,掌握频数=总数×频率是解题关键.6、C【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,,,∴,∴成绩波动最小的班级是:丙班.故选:C.【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键.7、A【分析】根据方差的性质解答.【详解】解:∵甲乙两人的方差分别是=1.2,=1.1,∴乙比甲稳定,故选:A.【点睛】此题考查了方差的性质:方差越小越稳定.8、C【分析】根据方差公式进行计算即可.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.【详解】﹣1,2,0,1,﹣2,这组数据的平均数为故选C【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键.9、B【分析】根据平均数和方差的变化规律即可得出答案.【详解】∵a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,∴数据a、b、c、d、e、f、g的平均数是m+1,方差是n,
∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;
∵数据a、b、c、d、e、f、g的方差是n,
∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22•n=4n;
故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.10、C【分析】抽取的100件进行质检,发现其中有5件不合格,由此即可求出这类产品的不合格率是5%,然后利用样本估计总体的思想,即可知道不合格率是5%,即可求出该厂这10万件产品中不合格品的件数.【详解】解:∵某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,∴不合格率为5÷100=5%,∴估计该厂这10万件产品中不合格品约为10×5%=0.5万件,故选C.【点睛】此题主要考查了样本估计总体的思想,此题利用样本的不合格率去估计总体的不合格率.二、填空题1、8【分析】根据极差的定义,分析即可,极差:一组数据中最大值与最小值的差叫做这组数据的极差.【详解】解:数据6,3,9,7,1的极差是故答案为:【点睛】本题考查了极差定义,理解极差的定义是解题的关键.2、12 3 【分析】方差公式为 ,其中n是样本容量,表示平均数.根据公式直接求解.【详解】解:∵一个样本的方差是,
∴该样本的容量是12,样本平均数是3.
故答案为:12,3.【点睛】此题考查方差的定义,解题的关键是熟练运用方差公式,此题难度不大.3、【分析】结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.【详解】∵1,a,3,6,7,它的平均数是5∴ ∴ ∴这组数据的方差是: 故答案为:.【点睛】本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.4、4000【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有200条,即可得出答案.【详解】解:∵300条鱼中发现有标记的鱼有15条,
∴有标记的占到,
∵有200条鱼有标记,
∴该河流中有野生鱼200÷=4000(条);
故答案为:4000.【点睛】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.5、84 83.2 甲的成绩比乙稳定 甲 甲的平均成绩高且比较稳定 【分析】(1)利用平均数等于一组数据的总和除以这组数据的个数,即可求解;(2)根据题意得:,则甲的成绩比乙稳定,即可求解;(3)根据甲的平均成绩高且比较稳定,即可确定甲去.【详解】(1)甲成绩的平均数是: ;乙成绩的平均数是: ;(2)∵,∴,∴甲的成绩比乙稳定,(3)甲去参加比赛更合适,理由:甲的平均成绩高且比较稳定.【点睛】本题主要考查了求平均数,运用平均数和方差作决策,熟练掌握平均数等于一组数据的总和除以这组数据的个数是解题的关键.三、解答题1、(1)13.2,13.4;(2)小明:中位数13.3,众数13.3,小亮:中位数13.3;(3)小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【分析】(1)从统计图中可得到每次百米训练的成绩,从而填入表格即可;(2)根据中位数、众数的意义求出结果即可;(3)计算两人的平均数、方差,再比较得出结论.【详解】解:(1)从统计图可知,小明第次的成绩为,小亮第次的成绩为,故答案为:,;补全的表格如下:次数12345小明13.313.413.313.213. 3小亮13.213.413.113.513.3(2)小明次成绩的中位数是,众数为;小亮次成绩的中位数是;(3)小明小亮∴小明小亮∵小明小亮∴小明小亮∴小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【点睛】本题考查折线统计图、加权平均数、中位数、众数以及方差的意义和计算方法,明确各个统计量的意义是正确解答的前提.2、(1)甲组平均数为6.8,中位数为6,乙组方差为1.96;(2)见解析【分析】(1)由折线图中数据,根据中位数和加权平均数、方差的定义求解可得;(2)可从平均数和中位数两方面阐述即可.【详解】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其平均数为=6.8,中位数为6,乙组成绩从小到大排列为:5、5、6、7、7、8、8、8、9、9,∴乙组学生成绩的方差为=[2×(5-7.2)2+(6-7.2)2+2×(7-7.2)2+3×(8-7.2)2+2×(9-7.2)2]=1.96;(2)①因为乙组学生的平均分高于甲组学生,所以乙组学生的成绩好于甲组;②因为乙组学生的中位数高于甲组学生,所以乙组学生的成绩好于甲组;所以乙组学生的成绩好于甲队组.【点睛】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.3、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为(人).【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果.【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,∴抽取的总人数为:(人),∴D组所占的比例为:,∴a的值为8;(2)C组频数为:,补全统计图如图所示:
(3)不少于9个小时的只有A、B两个组,总数为:,所占比例为:,∴估计符合要求的人数为:(人).【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键.4、(1)25,图见详解;(2)6.5;6;(3)12【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】解:(1)(组),(组),,统计图如下:(2)∵8分这一组的组数为5,∴各组得分的中位数是,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,(组,该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.5、(1)50(人);(2)10(人),图形见详解;(3)72°.(4)160(人).【分析】(1)利用成绩为良的人数以及百分比求出总人数即可.
(2)求出成绩为中的人数,画出条形图即可.
(3)根据圆心角=360°×百分比即可.
(4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可.【详解】解:(1)总人数=22÷44%=50(人).
(2)中的人数=50−10−22−8=10(人),
条形图如图所示:
(3)表示成绩类别为“优”的扇形所对应的圆心角的度数=360°×=72°,故答案为72°.
(4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),∴抽查中成绩类别“优”与“中”的划成“上线生”百分比为:学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为400×40%=160(人).【点睛】本题考查条形统计图和扇形统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力.
相关试卷
这是一份2020-2021学年第十七章 方差与频数分布综合与测试课后作业题,共21页。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课时训练,共19页。试卷主要包含了一组数据等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共19页。试卷主要包含了已知一组数据的方差s2=[等内容,欢迎下载使用。