初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习
展开这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为( )
A.出现正面的频率是4 B.出现反面的频率是6
C.出现反面的频率是60% D.出现正面的频数是40%
2、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在小组,而不在小组),根据图形提供的信息,下列说法中错误的是( )
A.该学校教职工总人数是50人
B.年龄在小组的教职工人数占总人数的20%
C.某教师40岁,则全校恰有10名教职工比他年轻
D.教职工年龄分布最集中的在这一组
3、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )
A.本次共随机抽取了40名学生;
B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;
C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;
D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;
4、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
5、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ).
A.4 B.5 C.6 D.7
6、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )
A.2 B.11.1% C.18 D.
7、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )
A.众数是 B.中位数是 C.平均数是 D.方差是
8、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( )
A.众数是11 B.平均数是12 C.方差是 D.中位数是13
9、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是( )
A.7 B.8 C.9 D.10
10、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )
A.由这两个统计图可知喜欢“科普常识”的学生有90人
B.若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个
C.由这两个统计图不能确定喜欢“小说”的人数
D.在扇形统计图中,“漫画”所在扇形的圆心角为
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某组数据的频数为63,样本容量为90,则频率为____.
2、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知:
(1)该班有________名学生;
(2)69.5~79.5这一组的频数是________,频率是________.
3、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为=38,=10,则______同学的数学成绩更稳定.
4、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.
5、某科研小组为了考查A区域河流中野生鱼的数量,从中捕捞200条,作上标记后,放回河中,经过一段充足的时间后,再从中抽捞出300条,发现有标记的鱼有15条,则估计A区域河流中野生鱼有____条.
三、解答题(5小题,每小题10分,共计50分)
1、近日,教育部印发通知,决定实施青少年急救教育行动计划,开展全国学校急救教育试点工作.某校为普及急救知识,进行了相关知识竞赛,现从七、八年级中各随机抽取20名学生的竞赛成绩进行整理、描述和分析(成绩得分用x表示,共分为四个等级:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100),下面给出了部分信息.
七年级20名学生的竞赛成绩是:62,68,75,80,82,85,86,88,89,90,90,95,96,98,99,99,99,99,100,100.
八年级20名学生的竞赛成绩中C等级包含的所有数据为:82,84,85,86,88,89.
七、八年级抽取的学生竞赛成绩统计表
年级 | 七年级 | 八年级 |
平均数 | 89 | 89 |
中位数 | 90 | b |
众数 | c | 100 |
根据以上信息,解答下列问题:
(1)填空:上述图表中a= ,b= c= ;
(2)根据图表中的数据,判断七、八年级中哪个年级学生竞赛成绩更好?请说明理由(写出一条理由即可);
(3)该校七、八年级共2000名学生参加了此次竞赛活动,估计竞赛成绩为D等级的学生人数是多少?
2、 “网上购物”已成为现代人们的生活方式.某电商平台在A地区随机抽取了100位居民进行调查,获得了他们每个人近七天“网上购物”消费总金额(单位:元),整理得到右边频率统计表:
消费总金额x | 频率 |
0.11 | |
0.24 | |
0.3 | |
0.2 | |
0.1 | |
0.04 | |
0.01 |
(1)求被调查居民“网上购物”消费总金额不低于500元的频率;
(2)假设同一组中的数据用该组数据所在范围的组中值(如一组,取)为准,求该地区消费总金额的平均值;
(3)若A地区有100万居民,该平台为了促销,拟对消费总金额不到200元的居民提供每人10元的优惠,试估计该平台在A地区拟提供的优惠总金额.
3、 “足球运球”是中考体育选考项目之一.某学校为了解今年九年级学生足球运球的情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有500名学生,请估计足球运球测试成绩达到A级的学生有多少人?
4、某校为了增强学生的疫情防控意识,组织全校600名学生进行了疫情防控知识竞赛.从中随机抽取了名学生的竞赛成绩(满分100分,每名学生的成绩记为分),分成四组:组;组;组;组,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:
(1)求的值.
(2)补全频数分布直方图.
(3)若规定学生竞赛成绩为优秀,请估计全校竞赛成绩达到优秀的学生人数.
5、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷, 随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题:
(1) 这次活动共调查了_______人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______;
(2)请将条形统计图补充完整;
(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?
(4)根据上图, 你可以获得什么信息?
-参考答案-
一、单选题
1、C
【分析】
根据频率的计算方法判断各个选项.
【详解】
解:A、应为:出现正面的频数是4,错误,不符合题意;
B、应为:出现反面的频数是6,错误,不符合题意;
C、正确,符合题意;
D、出现正面的频率是40%,错误,不符合题意.
故选:C.
【点睛】
本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.
2、C
【分析】
各组的频数的和就是总人数,再根据百分比、众数、中位数的定义逐一解题.
【详解】
解:A. 该学校教职工总人数是4+6+11+10+9+6+4=50人,正确,故A不符合题意;
B. 年龄在小组的教职工人数占总人数的20%,正确,故B不符合题意;
C. 教职工年龄的中位数在这一组,某教师40岁,则全校恰有10名教职工比他年轻说法是错误的,故C符合题意;
D. 教职工年龄分布最集中的在这一组,正确,故D不符合题意,
故选:C.
【点睛】
本题考查频数分布直方图,是重要考点,从图中获取正确信息是解题关键.
3、D
【分析】
由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:乘以该组人数所占抽查总人数得比例即可判断D选项.
【详解】
解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,
∴抽查总人数为:,A选项正确;
60~80分钟的人数为:人,
先对数据排序后可得:最中间的数在第20,21之间,
,,
∴中位数落在60~80分钟这一组,故B选项正确;
从图中可得,每天超过1小时的人数为:人,
估算全校人数中每天超过1小时的人数为:人,故C选项正确;
0~20分钟这一组有4人,
扇形统计图中这一组的圆心角为:,故D选项错误;
故选:D.
【点睛】
题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.
4、B
【分析】
根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.
【详解】
众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.
故选:B
【点睛】
本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.
5、C
【分析】
根据组数=(最大值-最小值)÷组距计算即可.
【详解】
解:∵在样本数据中最大值与最小值的差为35-15=20,
又∵组距为4,
∵20÷4=5,
∴应该分成5+1=6组.
故选:C.
【点睛】
本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.
6、A
【分析】
根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CoronaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
7、D
【分析】
根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可
【详解】
根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7
其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;
这组数据的中位数为:6,故B选项正确,不符合题意;
这组数据的平均数为,故C选项正确,不符合题意;
这组数据的方差为:,故D选项不正确,符合题意.
故选D.
【点睛】
本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.
8、D
【分析】
根据中位数、平均数、众数和方差的定义计算即可得出答案.
【详解】
解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;
B. =(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意;
C.S2=×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=,故选项C不符合题意;
D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;
故选:D.
【点睛】
本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.
9、A
【分析】
每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数.
【详解】
解:第4小组的频数是40−(6+5+15+7)=7,
故选:A.
【点睛】
本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.
10、C
【分析】
根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项.
【详解】
A.喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;
C.喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.
D.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;
故选C.
【点睛】
本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
二、填空题
1、0.7
【分析】
根据频率=频数÷总数,求解即可.
【详解】
这组数据的频率63÷90=0.7,
故答案为:0.7.
【点睛】
本题考查了频率的计算公式,解答本题的关键是掌握公式:频率=频数÷总数.
2、60 18 0.3
【分析】
(1)根据直方图的意义,将各组频数之和相加可得答案;
(2)由直方图可以看出:频数为18,又已知总人数,相除可得其频率.
【详解】
解:(1)根据直方图的意义,总人数为各组频数之和=6+8+10+18+16+2=60(人),
故答案是:60;
(2)读图可得:69.5~79.5这一组的频数是18,频率=18÷60=0.3,
故答案是:18,0.3.
【点睛】
本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.
3、乙
【分析】
根据平均数相同时,方差越小越稳定可以解答本题.
【详解】
解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为,,
,
乙同学的数学成绩更稳定,
故答案为:乙.
【点睛】
本题考查方差,解题的关键是明确方差越小越稳定.
4、0.4
【分析】
先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;
【详解】
由题可知:第四小组的频数,
频率=频数÷样本容量;
故答案是0.4.
【点睛】
本题主要考查了频率和频数的计算,准确分析计算是解题的关键.
5、4000
【分析】
捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有200条,即可得出答案.
【详解】
解:∵300条鱼中发现有标记的鱼有15条,
∴有标记的占到,
∵有200条鱼有标记,
∴该河流中有野生鱼200÷=4000(条);
故答案为:4000.
【点睛】
此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.
三、解答题
1、(1)40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)900人
【分析】
(1)根据八年级C等级有6个学生可得a,根据扇形统计图可得八年级中位数b,根据七年级的成绩可得众数c;
(2)比较平均数、中位数和众数可得结论;
(3)求出七、八年级学生竞赛成绩为D等级的百分比可得答案.
【详解】
解:(1)八年级20名学生的竞赛成绩中C等级包含6个分数,
C等级所占百分比为=30%,
a%=1﹣20%﹣10%﹣30%=40%,
∴a=40,
八年级成绩A等级的有20×20%=4(人),B等级的有20×10%=2(人),
∴八年级中位数位于C等级的第4、5两个数据即86,88,
八年级中位数位于C等级,b==87,
七年级成绩是众数是99分,c=99,
故答案为:40,87,99;
(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;
(3)七年级D等级人数是10人,八年级D等级人数是20×40%=8人,
2000×=900(人),
答:竞赛成绩为D等级的学生人数是900人.
【点睛】
本题考查了扇形统计图、中位数、众数、平均数,理解中位数、众数、平均数的计算方法是正确求解的前提.
2、(1)0.05;(2)260元;(3)350万元
【分析】
(1)根据表格数据,将不低于500的频率相加即可;
(2)根据组中值乘以对应的频率即可求得该地区消费总金额的平均值;
(3)根据表中消费总金额不到200元的频率乘以100万即可求得该平台在A地区拟提供的优惠总金额.
【详解】
解:(1)被调查居民“网上购物”消费总金额不低于500元的频率为0.04+0.01=0.05
(2)该地区消费总金额的平均值为(元)
(3)(万元)
【点睛】
本题考查了根据频率求频数,根据组中值求平均数,根据样本求总体,掌握频数与频率的关系是解题的关键.
3、(1);(2)见解析;(3)B;(4)50.
【分析】
(1)首先根据B等级的人数和所占的百分比求出总人数,然后求出C等级的人数和所占的百分比,进而可求出C对应的扇形的圆心角的度数;
(2)根据(1)中求出的C等级的人数补全条形统计图即可;
(3)把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,根据题意求解即可;
(4)根据样本中A等级的人数和总人数可求出所占的百分比,即可求出九年级500名学生中A等级的学生人数.
【详解】
解:(1)∵B等级的人数是18,所占的百分比是,
∴总人数为(人),
∴C等级的人数为(人),
∴C等级的人数所占的百分比为,
∴C对应的扇形的圆心角是;
(2)由(1)可得,C等级的人数为13(人),
∴如图所示,
(3)由(1)可得,共有40名学生,
∴中位数为第20位学生和第21位学生成绩的平均数,
∵A等级有4人,B等级有18人,
∴第20位学生和第21位学生成绩都在B等级,
∴所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案是:B;
(4)∵A等级的学生有4人,总人数有40人,
∴A等级的人数所占的百分比为,
∴九年级500名学生中A等级的学生人数为(人).
【点睛】
此题考查了条形统计图和扇形统计图的综合运用,正确分析统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比大小.
4、(1)50;(2)见解析;(3)180人
【分析】
(1)根据组的频数和所占的百分比,可以求得的值;
(2)根据(1)中的值和频数分布直方图中的数据,可以计算出组的频数,从而可以将频数分布直方图补充完整;
(3)根据直方图中的数据,可以计算出全校成绩达到优秀的人数.
【详解】
解:(1);
(2)组学生有:(人),
补全的频数分布直方图如图所示;
(3)(人),
答:估算全校成绩达到优秀的有180人.
【点睛】
本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确统计图的特点和中位数的含义,利用数形结合的思想解答.
5、(1)200;;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一
【分析】
(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;
(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;
(4)信息合理即可.
【详解】
(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,
表示“支付宝”支付的扇形圆心角的度数为:360°×=81°,
故答案为:200,81°;
(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,
补充完整的条形统计图如图所示:
(3).
答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.
(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共22页。试卷主要包含了数学老师将本班学生的身高数据等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题,共20页。试卷主要包含了一组数据,某排球队6名场上队员的身高等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共22页。试卷主要包含了下列一组数据等内容,欢迎下载使用。