数学北京课改版第十四章 一次函数综合与测试同步练习题
展开这是一份数学北京课改版第十四章 一次函数综合与测试同步练习题,共24页。试卷主要包含了若点在第三象限,则点在.,点在,点P在第二象限内,P点到x,一次函数的一般形式是等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
A. B. C. D.
2、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )
A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
3、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
4、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )
A. B. C. D.
6、点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )
A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
8、一次函数的一般形式是(k,b是常数)( )
A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x
9、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:
①越野登山比赛的全程为1000米;
②甲比乙晚出发40分钟;
③甲在途中休息了10分钟;
④乙追上甲时,乙跑了750米.其中正确的说法有( )个
A.1 B.2 C.3 D.4
10、在平面直角坐标系中,点P(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中有两点,,如果点在轴上方,由点,,组成的三角形与全等时,此时点的坐标为______.
2、如图,函数和的图象相交于,则不等式的解集为____.
3、在平面直角坐标系中,点在轴上,则点的坐标为________.
4、某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是_______.
5、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
三、解答题(5小题,每小题10分,共计50分)
1、为响应政府号召,某地水果种植户借助电商平台,在线下批发的基础上同步在电商平台上零售水果.已知线上零售40千克,线下批发80千克水果共获得4000元;线上零售60千克和线下批发80千克水果销售额相同.
(1)求线上零售和线下批发水果的单价分别为每千克多少元?
(2)若该地区水果种植户张大叔某月线上零售和线下批发共销售水果2000千克,设线上零售m千克.获得的总销售额为w元.
①求w与m之间的函数关系式;
②若总销售额为70000元,则线上零售量为多少千克?
2、如图1,直线与轴交于点,与轴交于点,点与点关于轴对称.
(1)求直线的函数表达式;
(2)设点是轴上的一个动点,过点作轴的平行线,交直线于点,交直线于点,连接.
①若,请直接写出点的坐标 ;
②若的面积为,求出点的坐标 ;
③若点为线段的中点,连接,如图2,若在线段上有一点,满足,求出点的坐标.
3、已知函数y=(k-3)xk+2是正比例函数,求代数式k2-1的值.
4、某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,
(1)当时,单价y为______元;当单价y为8.8元时,购买量x(千克)的取值范围为______;
(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;
(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?
5、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共台,设购进电冰箱台,这台家电的销售总利润元,要求购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润.
(3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
【详解】
解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=kx-k的图象经过一、二、四象限;
故选:C.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
2、A
【解析】
【分析】
根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
【详解】
解:∵轴,且,点B在第二象限,
∴点B一定在点A的左侧,且两个点纵坐标相同,
∴,即,
故选:A.
【点睛】
题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
3、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
4、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、C
【解析】
【分析】
因为正比例函数的函数值随的增大而减小,可以判断;再根据判断出的图象的大致位置.
【详解】
解:正比例函数的函数值随的增大而减小,
,
一次函数的图象经过一、三、四象限.
故选C.
【点睛】
主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.
6、C
【解析】
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
7、C
【解析】
【分析】
点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
【详解】
∵P点到x、y轴的距离分别是4、3,
∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
∵点P在第二象限内,
∴点P的坐标为(-3,4),
故选:C.
【点睛】
本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
8、C
【解析】
【分析】
根据一次函数的概念填写即可.
【详解】
解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,
故选:C.
【点睛】
本题考查了一次函数的概念,做题的关键是注意k≠0.
9、C
【解析】
【分析】
根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.
【详解】
解:由图像可知,从起点到终点的距离为1000米,故①正确;
根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;
在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;
∵乙从起点到终点的时间为10分钟,
∴乙的速度为1000÷10=100米/分钟,
设乙需要t分钟追上甲,
,
解得t=7.5,
∴乙追上甲时,乙跑了7.5×100=750米,故④正确;
故选C.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
10、B
【解析】
【分析】
根据点横纵坐标的正负分析得到答案.
【详解】
解:点P(-2,3)在第二象限,
故选:B.
【点睛】
此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
二、填空题
1、 (4,2)或(-4,2) ##(-4,2)或(4,2)
【解析】
【分析】
根据点的坐标确定OA、OB的长,然后利用全等可分析点的位置,最后分情况解答即可.
【详解】
解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),
∴OA=4,OB=2,∠AOB=90°
∵△CBO≌△AOB
∴CB= OA =4,OB=OB=2,
∵点在轴上方
∴当点C在第一象限时,C点坐标为(4,2)
当点C在第二象限时,C点坐标为(-4,2)
∴C的坐标可以为(4,2)或(-4,2).
故填(4,2)或(-4,2).
【点睛】
本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.
2、
【解析】
【分析】
观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集.
【详解】
解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,
即当时,.
∴不等式的解集为,
故答案为:.
【点睛】
本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
3、(10,0)
【解析】
【分析】
利用点在轴上的坐标特征,得到纵坐标为0,求出的值,代入横坐标,即可求出点坐标.
【详解】
解:点在轴上,
,故,
点横坐标为10,
故点坐标为(10,0).
故答案为:(10,0).
【点睛】
本题主要是考查了轴上点的坐标特征,熟练掌握轴上的点的纵坐标为0,是解题的关键.
4、x>300
【解析】
【分析】
根据题意首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围.
【详解】
解:由题设可得不等式kx+30<x.
∵y1=kx+30经过点(500,80),
∴k=,
∴y1=x+30,y2=x,解得:x=300,y=60.
∴两直线的交点坐标为(300,60),
∴当x>300时不等式kx+30<x中x成立,
故答案为:x>300.
【点睛】
本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
5、或
【解析】
【分析】
根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
【详解】
解:∵点,,且ABx轴,
∴y=2,
∵点到轴的距离是到轴距离的2倍,
∴,
∴,
∴B(-4,2)或(4,2).
故答案为(-4,2)或(4,2).
【点睛】
本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
三、解答题
1、(1)线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①;②线上零售量为到1000千克.
【解析】
【分析】
(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,根据题意列出二元一次方程组求解即可;
(2)①由题意可得:线上零售m千克,则线下批发千克,利用销售数量、单价、销售总价的关系即可得;
②当时,代入①结论求解即可得.
【详解】
解:(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,
由题意得:,
解得:,
∴线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;
(2)①由题意可得:线上零售m千克,则线下批发千克,
,
即函数关系式为:;
②由(1)可得:当时,
,
解得:,
∴线上零售量为到1000千克.
【点睛】
题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应的方程及函数解析式是解题关键.
2、(1);(2)①,;②点的坐标为,或,;③点F的坐标,.
【解析】
【分析】
(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;
(2)①设点M(m,0),则点P(m,),则,由B(0,3),C(6,0),则,,,再由勾股定理得,,则,由此求解即可;
②设点, ,点在直线上,,,,进行求解即可;
③过点作交于,过点作轴于,根据,是等腰直角三角形,再证,得出,,根据点为线段的中点,,求出,设,则, 待定系数法求直线的解析式为,点在上,,,代入得方程解方程即可.
【详解】
(1)对于,令,,
,
令,
,
,
,
点与点A关于轴对称,
,
设直线的解析式为,
,
,
直线的解析式为;
(2)①设点,
,
,,
,,,
,
是直角三角形,
,
,
,
,
故答案为:;
②设点,
点在直线上,
,
点在直线上,
,
,
的面积为,
,
,
,或,;
③过点作交于,过点作轴于,
,
是等腰直角三角形,
,,
,
,
,
,
,,
点为线段的中点,,
,,
设,则,,则,,
,,
设直线的解析式为,
,
解得:,
直线的解析式为,
点在上,,,
,
解得:,
点的坐标为,.
【点睛】
本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰直角三角形的性质,解题的关键在于能够熟练掌握待定系数法求一次函数解析式.
3、0
【解析】
【分析】
根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量指数为1,得出k值,代入代数式求解即可.
【详解】
解:∵函数y=(k-3)xk+2是正比例函数,
∴k+2=1且k-3≠0,
解得:k=-1,
∴k2-1=(-1)2-1=0.
【点睛】
本题考查了正比例函数的定义,熟知正比例函数的定义是解题关键.
4、(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【解析】
【分析】
(1)根据观察函数图象的横坐标,纵坐标,可得结果;
(2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;
(3)将代入(2)函数解析式即可.
【详解】
解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.
故答案为:10;;
(2)设函数图象的解析式 (k是常数,b是常数,),
图象过点,,
可得:,
解得,
函数图象的解析式:;
(3)当时,
,
答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【点睛】
本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.
5、(1)每台空调的进价为元,则每台电冰箱的进价为元;(2)当购进电冰箱台,空调台获利最大,最大利润为元;(3)当时,购进电冰箱台,空调台销售总利润最大;当时,,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大
【解析】
【分析】
设每台空调的进价为元,则每台电冰箱的进价为元,根据商城用元购进电冰箱的数量与用元购进空调的数量相等”,列出方程,即可解答;
设购进电冰箱台,这台家电的销售总利润为元,则,由题意:购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,列出不等式组,解得,再由为正整数,的,,,,,,,即合理的方案共有种,然后由一次函数的性质,确定获利最大的方案以及最大利润;
当电冰箱出厂价下调元时,则利润,分三种情况讨论:当;当时;当;利用一次函数的性质,即可解答.
【详解】
解:设每台空调的进价为元,则每台电冰箱的进价为元,
根据题意得:,
解得:,
经检验,是原方程的解,且符合题意,
,
答:每台空调的进价为元,则每台电冰箱的进价为元.
设购进电冰箱台,这台家电的销售总利润为元,
则,
根据题意得:,
解得:,
为正整数,
,,,,,,,
合理的方案共有种,
即电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
,,
随的增大而减小,
当时,有最大值,最大值为:元,
答:当购进电冰箱台,空调台获利最大,最大利润为元.
当厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,
则利润,
当,即时,随的增大而增大,
,
当时,这台家电销售总利润最大,即购进电冰箱台,空调台;
当时,,各种方案利润相同;
当,即时,随的增大而减小,
,,
当时,这台家电销售总利润最大,即购进电冰箱台,空调台;
答:当时,购进电冰箱台,空调台销售总利润最大;
当时,,各种方案利润相同;
当时,购进电冰箱台,空调台销售总利润最大.
【点睛】
本题考查了列分式方程的应用、一元一次不等式组的应用以及一次函数的应用,找准数量关系,正确列出分式方程和一元一次不等式组是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试综合训练题,共30页。试卷主要包含了点P在第二象限内,P点到x等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步练习题,共33页。试卷主要包含了已知点A,若点在第三象限,则点在.,点P在第二象限内,P点到x等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共24页。试卷主要包含了下列命题为真命题的是,已知点,已知点A等内容,欢迎下载使用。