初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题
展开京改版八年级数学下册第十四章一次函数专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
2、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1和y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.无法确定
3、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
A. B. C. D.
4、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是( )
A.k=0 B.k=1 C.k=2 D.k=3
5、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
6、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )
A. B. C. D.
7、在平面直角坐标系中,点P(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
9、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
10、下列命题中,真命题是( )
A.若一个三角形的三边长分别是a、b、c,则有
B.(6,0)是第一象限内的点
C.所有的无限小数都是无理数
D.正比例函数()的图象是一条经过原点(0,0)的直线
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.
2、写一个y关于x的函数,同时满足两个条件:(1)图象经过点(-3,2);(2) y随x的增大而增大.这个函数表达式可以为_____________________________.(写出一个即可)
3、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.
4、已知函数y=,那么自变量x的取值范围是_________.
5、如果 ,y=2,那么x = ______
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,A(a,0),B(b,0),C(c,0),a≠0且a,b,c满足条件.
(1)直接写出△ABC的形状 ;
(2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°
① 如图1,当点E与点C重合时,求AD的长;
② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;
2、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
3、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.
(1)求这两个函数的表达式;
(2)求两直线与y轴围成的三角形的面积.
4、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?
5、阅读下列一段文字,然后回答问题.
已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.
(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;
(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.
(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
2、A
【解析】
【分析】
由题意直接根据一次函数的性质进行分析即可得到结论.
【详解】
解:∵直线y=﹣x+b中,k=﹣<0,
∴y将随x的增大而减小.
∵﹣4<2,
∴y1>y2.
故选:A.
【点睛】
本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
3、C
【解析】
【分析】
由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
【详解】
解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=kx-k的图象经过一、二、四象限;
故选:C.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
4、A
【解析】
【分析】
利用一次函数y随x的增大而减小,可得,即可求解.
【详解】
∵当x1<x2时,y1>y2
∴一次函数y=(k)x+2的y随x的增大而减小
∴
∴
∴k的值可能是0
故选:A.
【点睛】
本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.
5、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
6、A
【解析】
【分析】
由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
【详解】
解:过点P作PM⊥OD于点M,
∵长方形的顶点的坐标分别为,点是的中点,
∴点D(5,0)
∵,PM⊥OD,
∴OM=DM
即点M(2.5,0)
∴点P(2.5,4),
故选:A
【点睛】
此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
7、B
【解析】
【分析】
根据点横纵坐标的正负分析得到答案.
【详解】
解:点P(-2,3)在第二象限,
故选:B.
【点睛】
此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
8、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
9、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
10、D
【解析】
【分析】
根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.
【详解】
解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;
B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;
C、无限不循环小数都是无理数,
D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;
故选:D
【点睛】
本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.
二、填空题
1、1760
【解析】
【分析】
根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.
【详解】
解:小明离家2分钟走了160米,
∴小明初始速度为160÷2=80米/分;
小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;
小明在家换衣服3分钟时间,妈妈走了40×3=120米,
设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,
则有160t=1200+120+40t,
∴t=11,
∴小明离家距离为11×160=1760米.
故答案为:1760米.
【点睛】
本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.
2、(答案不唯一)
【解析】
【分析】
取y关于x的一次函数,设,把代入求出,得出函数表达式即可.
【详解】
取y关于x的一次函数,
y随x的增大而增大,
取,
设y关于x的一次函数为,
把代入得:,
这个函数表达式可以为.
故答案为:(答案不唯一).
【点睛】
本题考查一次函数的性质,掌握一次函数的相关性质是解题的关键.
3、y=48x+20(x>2)##y=20+48x(x>2)
【解析】
【分析】
根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.
【详解】
解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,
∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:
y=(60x-100)×0.8+100=48x+20(x>2),
故答案为:y=48x+20(x>2).
【点睛】
本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.
4、
【解析】
【分析】
根据二次根式有意义的条件列出不等式,解不等式得到答案.
【详解】
解:由题意得,,
解得,,
故答案为:.
【点睛】
本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.
5、3
【解析】
【分析】
把y=2代入 y=x计算即可.
【详解】
解:∵y=2,
∴2=x,
∴x=3
故答案为:3.
【点睛】
本题考查了正比例函数的问题,做题的关键是掌握将y值代入即可求解.
三、解答题
1、(1)等腰三角形,证明见解析;(2)①;②
【解析】
【分析】
(1)先证明 再证明 从而可得答案;
(2)① 先证明是等边三角形,可得 再证明
再利用含的直角三角形的性质求解 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFD(AAS), 可得AC=EF,再求解BD=,CF=CD=, 再求解OE=, 从而可得答案.
【详解】
解:(1) ,
解得:
A(,0),B(b,0),C(3,0),
而
是等腰三角形.
(2)① ∠ACB=120°,∠ADE=60°,
是等边三角形,
②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:
∵AC=BC,∠ACB=120°,
∴∠ACO=∠BCO=60°,
∴△CDF是等边三角形,
∴∠CFD=60°,CD=FD,
∴∠EFD=120°,
∵∠ACO=∠ADE=60°,
∴∠CAD=∠CED,
又∵∠ACD=∠EFD=120°,
∴△ACD≌△EFD(AAS),
∴AC=EF, 由(1)得:c=3, ∴OC=3,
∵∠AOC=90°,∠ACO=60°,
∴∠OAC=30°,
∴BC=AC=2OC=6,EF=AC=6,
∵CD=2BD, ∴BD=,CF=CD=,
∴CE=EF+CF=,
∴OE=CE-OC=,
∴
【点睛】
本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键.
2、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】
(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
3、(1),;(2)
【解析】
【分析】
(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;
(2)由点A的坐标及OB的长度即可求得△AOB的面积.
【详解】
∵A(4,3)
∴OA=OB==5,
∴B(0,-5),
设直线OA的解析式为y=kx,则4k=3,k=,
∴直线OA的解析式为,
设直线AB的解析式为,把A、B两点的坐标分别代入得:,
∴,
∴直线AB的解析式为y=2x-5.
(2).
【点睛】
本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.
4、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①y=﹣80x+24000;②商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元
【解析】
【分析】
(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;
(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;
②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
【详解】
解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,
根据题意得,,
解得.
∴每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;
(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元,
据题意得,y=160x+240(100﹣x),
即y=﹣80x+24000,
②∵100﹣x≤2x,
∴x≥33,
∵y=﹣80x+24000,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100﹣x=66,此时y=-80×34+24000=21280(元),
即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元.
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
5、(1)5;(2)能,理由见解析;(3),
【解析】
【分析】
(1)根据文字提供的计算公式计算即可;
(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;
(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.
【详解】
(1)∵A、B两点在平行于y轴的直线上
∴AB=
即A、B两点间的距离为5
(2)能判定△DEF的形状
由两点间距离公式得:,
,
∵DE=DF
∴△DEF是等腰三角形
(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小
由对称性知:点G的坐标为,且PG=PF
∴PD+PF=PD+PG≥DG
即PD+PF的最小值为线段DG的长
设直线DG的解析式为,把D、G的坐标分别代入得:
解得:
即直线DG的解析式为
上式中令y=0,即,解得
即点P的坐标为
由两点间距离得:DG=
所以PD+PF的最小值为
【点睛】
本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后测评: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共23页。试卷主要包含了一次函数的一般形式是,已知一次函数y=等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时训练: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时训练,共24页。试卷主要包含了一次函数y=等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试达标测试: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共25页。试卷主要包含了已知一次函数y=,下列命题为真命题的是,若一次函数y=kx+b等内容,欢迎下载使用。