![2022年必考点解析京改版八年级数学下册第十四章一次函数章节训练试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12703665/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析京改版八年级数学下册第十四章一次函数章节训练试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12703665/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析京改版八年级数学下册第十四章一次函数章节训练试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12703665/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题
展开这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共23页。
京改版八年级数学下册第十四章一次函数章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是( )
A. B.
C. D.
2、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )
A. B. C. D.
3、一次函数y=kx+b的图象如图所示,则下列说法错误的是( )
A.y随x的增大而减小
B.k<0,b<0
C.当x>4时,y<0
D.图象向下平移2个单位得y=﹣x的图象
4、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是( )
A.关于x的不等式ax+b>0的解集是x>2
B.关于x的不等式ax+b<0的解集是x<2
C.关于x的方程ax+b=0的解是x=4
D.关于x的方程ax+b=0的解是x=2
5、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
A.离北京市100千米 B.在河北省
C.在怀来县北方 D.东经114.8°,北纬40.8°
6、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
7、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
8、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )
A. B. C. D.
9、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )
A.①③ B.①④ C.①②③ D.①③④
10、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间/分钟 | 0 | 5 | 10 | 15 | 20 | 25 |
温度/℃ | 10 | 25 | 40 | 55 | 70 | 85 |
若温度的变化是均匀的,则18分钟时的温度是( )
A.62℃ B.64℃ C.66℃ D.68℃
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一次函数y=kx+b,若y随x的增大而减小,且函数图象与y轴交于正半轴,则点P(k,b)在第 _____象限.
2、点A(3,y1,),B(-2,y2)都在直线y=kx+b的图像上,且y随x的增大而减小.则y1与y2的大小关系是_______.
3、在函数的图象上有,,三个点,则,,的大小关系是_____________.(用“>”连接)
4、已知函数,如果函数值,那么相应的自变量的取值范围是_______.
5、一次函数与的图象如图所示,则关于、的方程组的解是______.
三、解答题(5小题,每小题10分,共计50分)
1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?
2、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?
3、综合与实践:制作一个无盖长方形盒子.
用一张正方形的纸片制成一个如图的无盖长方体纸盒.如果我们按照如图所示的方式,将正方形的四个角减掉四个大小相同的小正方形,然后沿虚线折起来,就可以做成一个无盖的长方体盒子.
(1)如果原正方形纸片的边长为a cm,剪去的正方形的边长为b cm,则折成的无盖长方体盒子的高为________cm,底面积为_______cm2,请你用含a,b的代数式来表示这个无盖长方体纸盒的容积__________cm3;
(2)如果a=20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,折成的无盖长方体的容积分别是多少?请你将计算的结果填入下表;
剪去正方形的边长/cm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
容积/cm3 | 324 | 512 | _____ | _____ | 500 | 384 | 252 | 128 | 36 | 0 |
(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?( )
A.一直增大 B.一直减小
C.先增大后减小 D.先减小后增大
(4)分析猜想当剪去图形的边长为__________时,所得的无盖长方体的容积最大,此时无盖长方体的容积是____________cm3.
(5)对(2)中的结果,你觉得表格中的数据还有什么要改进的地方吗?
4、某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.
方案一:买一件夹克送一件衬衣
方案二:夹克和衬衣均按定价的80%付款
现有顾客要到该商场购买夹克30件,衬衣x件(x>30)
(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;
(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?
(3)当x=40时,哪种方案更省钱?请说明理由.
5、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.
(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;
(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).
①当两车之间距离S=300km时,求x的值;
②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).
-参考答案-
一、单选题
1、D
【解析】
【分析】
若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
【详解】
解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
故选D.
【点睛】
本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
2、C
【解析】
【分析】
因为正比例函数的函数值随的增大而减小,可以判断;再根据判断出的图象的大致位置.
【详解】
解:正比例函数的函数值随的增大而减小,
,
一次函数的图象经过一、三、四象限.
故选C.
【点睛】
主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.
3、B
【解析】
【分析】
由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.
【详解】
解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;
一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;
由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;
由函数图象经过
,解得:
所以一次函数的解析式为:
把向下平移2个单位长度得:,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.
4、D
【解析】
【分析】
直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.
【详解】
解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;
B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;
C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;
D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;
故选:D.
【点睛】
本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.
5、D
【解析】
【分析】
若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
【详解】
离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
东经114.8°,北纬40.8°为准确的位置信息.
故选:D.
【点睛】
本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
6、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
7、A
【解析】
【分析】
先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
【详解】
解:∵一次函数y=mx+n的图象经过第一、二、四象限,
∴m<0,n>0
∴y随x增大而减小,
∵1<3,
∴y1>y2.
故选:A.
【点睛】
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.
8、D
【解析】
【分析】
由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.
【详解】
解:∵一次函数y=-x+2中,
令x=0得:y=2;令y=0,解得x=5,
∴B的坐标是(0,2),A的坐标是(5,0).
若∠BAC=90°,如图1,作CE⊥x轴于点E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO与△CAE中,,
∴△ABO≌△CAE(AAS),
∴OB=AE=2,OA=CE=5,
∴OE=OA+AE=2+5=7.
则C的坐标是(7,5).
设直线BC的解析式是y=kx+b,
根据题意得:,解得,
∴直线BC的解析式是y=x+2.
故选:D.
【点睛】
本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.
9、D
【解析】
【分析】
分析图像上每一段表示的实际意义,再根据行程问题计算即可.
【详解】
①甲的速度为,故正确;
②时,已的速度为,后,乙的速度为,故错误;
③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
④由①②③得:甲的函数表达式为:,
已的函数表达为:时,,时,,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距为,故正确.
故选:D.
【点睛】
本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.
10、B
【解析】
【分析】
根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
【详解】
解:根据图表可得:温度与时间的关系符合一次函数关系式,
设温度T与时间x的函数关系式为:,将,,代入解析式可得:
,
解得:,
∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
当时,
,
故选:B.
【点睛】
题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
二、填空题
1、二
【解析】
【分析】
由y随x的增大而减小,利用一次函数的性质可得出k<0,由一次函数y=kx+b的图象与y轴交于正半轴,利用一次函数图象上点的坐标特征可得出b>0,进而可得出点P(k,b)在第二象限.
【详解】
解:∵一次函数y=kx+b中y随x的增大而减小,
∴k<0,
∵一次函数y=kx+b的图象与y轴交于正半轴,
∴b>0,
∴点P(k,b)在第二象限.
故答案为:二.
【点睛】
本题考查了一次函数的性质,解题的关键是掌握一次函数的性质.
2、
【解析】
【分析】
根据y随x的增大而减小及即可得出结论.
【详解】
∵点A(3,y1,),B(-2,y2)都在直线y=kx+b的图像上,且y随x的增大而减小,
∴.
故答案为:.
【点睛】
本题考查的是一次函数图象上点的坐标特点,根据一次函数的增减性判断y1与y2的大小关系是解答此题的关键.
3、
【解析】
【分析】
根据一次函数图象的增减性来比较、、三点的纵坐标的大小.
【详解】
解:一次函数解析式中的,
该函数图象上的点的值随的增大而减小.
又,
.
故答案为:.
【点睛】
本题考查了一次函数图象上点坐标特征,一次函数的增减性,解题的关键是掌握一次函数的增减性,即在中,当时随的而增大,当时,随的增大而减小.
4、x>4
【解析】
【分析】
根据题意,先求出当时,自变量的值,然后根据一次函数的增减性求解即可.
【详解】
解:当时,,
解得,
∵一次函数解析式为,,
∴y随x增大而增大,
∴当时,,
故答案为:.
【点睛】
本题考查了一次函数的增减性和求自变量的值,熟知一次函数增减性是解题的关键.
5、
【解析】
【分析】
根据一次函数与的图象可知交点的横坐标为,将代入即可求得纵坐标的值,则的值即可为方程组的解
【详解】
解:∵一次函数与的图象交点的横坐标为,
∴当,
是方程组的解
故答案为:
【点睛】
本题考查了两直线的交点与二元一次方程组的解,数形结合是解题的关键.
三、解答题
1、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①y=﹣80x+24000;②商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元
【解析】
【分析】
(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;
(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;
②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
【详解】
解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,
根据题意得,,
解得.
∴每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;
(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元,
据题意得,y=160x+240(100﹣x),
即y=﹣80x+24000,
②∵100﹣x≤2x,
∴x≥33,
∵y=﹣80x+24000,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100﹣x=66,此时y=-80×34+24000=21280(元),
即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元.
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
2、东经度,南纬度可以表示为.
【解析】
【分析】
根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.
【详解】
解:由题意可知东经度,南纬度,可用有序数对表示.
故东经度,南纬度表示为.
【点睛】
本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.
3、 (1)b;(a-2b)2;b(a-2b)2
(2)588;576
(3)C
(4)3;588
(5)表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位
【解析】
【分析】
(1)根据截去的小正方形边长,得出无盖长方体盒子的高为bcm,然后求出底面边长,再求底面积,和体积即可;
(2)根据截去的边长,求出底面边长,再求出无盖的长方体盒子的体积即可;
(3)根据表格的信息可得随着减去的小正方形的边长的增大,得出无盖长方体盒子的容积变化规律;
(4)根据表格得出截去小正方形边长为整数3时,体积最大,计算即可;
(5)根据精确度要求越高,无盖长方体盒子的容积会更大些.
(1)
解:无盖长方体盒子的高就是截去的小正方形边长,无盖长方体盒子的高为bcm,底面边长(a-2b)cm,底面面积为(a-2b)2cm2, 做成一个无盖的长方体盒子的体积为b(a-2b)2cm3,
4、(1);(2)当时;(3)当x=40时,方案一更省钱.理由见解析.
【解析】
【分析】
(1)由题意分别根据方案一和方案二的条件列出代数式即可;
(2)根据题意可得,即,进而进行求解即可得出结论;
(3)根据题意把x=40分别代入y1和y2,进而分析即可得出结论.
【详解】
解:(1)由题意可得:
方案一购买共需付款(元),
方案二购买共需付款(元);
(2)由题意可得,即,
解得:,
所以购买衬衣90件时,两种方案付款一样多;
(3)当x=40时,(元),
(元),
因为,
所以当x=40时,方案一更省钱.
【点睛】
本题考查一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出关系式;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).
5、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.
【解析】
【分析】
(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;
(2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.
【详解】
解:(1)由图象可得:甲、乙两地之间的距离为450km;
设线段AB的解析式为y1=k1x+b1,
∵A(0,450),B(3,0),
∴,
解得:,
∴线段AB的解析式为y1=450﹣150x(0≤x≤3);
设两车在慢车出发x小时后相遇,
()x=450,
解得:x=2,
答:两车在慢车出发2小时后相遇.
故答案为:450;y1=﹣150x+450;2;
(2),
根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,
①当0≤x<2时,S=450x=300,
解得:x=,
当2≤x<3时,S=x=300,
解得:x=(舍去),
当3≤x≤6时,S=75x=300,
解得:x=4,
综上所述:x的值为或4.
②其图象为折线图如下:
【点睛】
本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共26页。试卷主要包含了在下列说法中,能确定位置的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共21页。试卷主要包含了已知函数和 的图象交于点P,若直线y=kx+b经过第一等内容,欢迎下载使用。
这是一份数学第十四章 一次函数综合与测试课后练习题,共24页。试卷主要包含了在平面直角坐标系中,点P,下面哪个点不在函数的图像上.等内容,欢迎下载使用。