初中数学北京课改版八年级下册第十四章 一次函数综合与测试一课一练
展开这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共22页。试卷主要包含了已知点,已知点A,,两地相距80km,甲等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是( )
A.k=0 B.k=1 C.k=2 D.k=3
2、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )
A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元
C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元
3、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
4、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
5、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )
A. B. C. D.
6、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1和y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.无法确定
7、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
8、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
9、关于一次函数y=﹣2x+3,下列结论正确的是( )
A.图象与x轴的交点为(,0)
B.图象经过一、二、三象限
C.y随x的增大而增大
D.图象过点(1,﹣1)
10、直线y=2x-1不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.
2、在平面直角坐标系中,已知两条直线l1:y=2x+m和l2:y=﹣x+n相交于P(1,3).请完成下列探究:
(1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为 _____.
(2)已知直线x=a(a>1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为 _____.
3、函数的定义域是 _____.
4、点A(3,y1,),B(-2,y2)都在直线y=kx+b的图像上,且y随x的增大而减小.则y1与y2的大小关系是_______.
5、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:
华氏温度(℉) | 50 | 68 | 86 | 104 | …… | 212 |
摄氏温度(℃) | 10 | 20 | 30 | 40 | …… | m |
(1)m=______;
(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.
三、解答题(5小题,每小题10分,共计50分)
1、在正比例函数y=(k-3)x|k-3|中,函数值y随x的增大而减小,求k的值.
2、某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.
(1)直线l1对应的函数表达式是 ,每台电脑的销售价是 万元;
(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式: ;
(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);
(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.
3、某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠.乙旅行社提出每人次收350元车费和住宿费,但有3人可享受免费待遇.
(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式;
(2)如果组织20人的旅行团时,选哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?
4、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
(1)求证:点A为线段BC的中点.
(2)求点D的坐标.
5、五和超市购进、两种饮料共200箱,两种饮料的成本与销售价如下表:
饮料 | 成本(元/箱) | 销售价(元/箱) |
25 | 35 | |
35 | 50 |
(1)若该超市花了6500元进货,求购进、两种饮料各多少箱?
(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,求与的函数关系式,并求购进种饮料多少箱时,可获得最大利润,最大利润是多少?
-参考答案-
一、单选题
1、A
【解析】
【分析】
利用一次函数y随x的增大而减小,可得,即可求解.
【详解】
∵当x1<x2时,y1>y2
∴一次函数y=(k)x+2的y随x的增大而减小
∴
∴
∴k的值可能是0
故选:A.
【点睛】
本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.
2、C
【解析】
【分析】
根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可.
【详解】
设起步价以后函数的解析式为y=kx+b,
把(5,15),(7,19)代入解析式,得,
解得,
∴y=2x+5,
当y=10时,x=2.5,
当x=10时,y=25,
∴C错误,D正确,B正确,A正确,
故选C.
【点睛】
本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键.
3、D
【解析】
【详解】
解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
4、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
5、D
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答.
【详解】
解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.
故选:D.
【点睛】
本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
6、A
【解析】
【分析】
由题意直接根据一次函数的性质进行分析即可得到结论.
【详解】
解:∵直线y=﹣x+b中,k=﹣<0,
∴y将随x的增大而减小.
∵﹣4<2,
∴y1>y2.
故选:A.
【点睛】
本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
7、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
8、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
9、A
【解析】
【分析】
利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.
【详解】
解:A.当y=0时,﹣2x+3=0,解得:x=,
∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;
B.∵k=﹣2<0,b=3>0,
∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;
C.∵k=﹣2<0,
∴y随x的增大而减小,选项C不符合题意;
D.当x=1时,y=﹣2×1+3=1,
∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.
故选:A.
【点睛】
本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.
10、B
【解析】
【分析】
根据一次函数的图象特点即可得.
【详解】
解:一次函数的一次项系数,常数项,
直线经过第一、三、四象限,不经过第二象限,
故选:B.
【点睛】
本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.
二、填空题
1、3
【解析】
【分析】
根据点的纵坐标的绝对值是点到轴的距离,可得答案.
【详解】
在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.
故答案为:3.
【点睛】
本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.
2、 4.5 ##
【解析】
【分析】
(1)把P(1,3)分别代入直线l1、 l2,求出直线,再求出两直线与x轴的交点,即可求解;
(2)分别表示出C,D的坐标,根据线段CD长为2,得到关于a的方程,故可求解.
【详解】
解:(1)把P(1,3)代入l1:y=2x+m得3=2+m
解得m=1
∴l1:y=2x+1
令y=0,∴2x+1=0
解得x=-,
∴A(-,0)
把P(1,3)代入l2:y=﹣x+n得3=-1+n
解得n=4
∴l1:y=﹣x+4
令y=0,∴﹣x+4=0
解得x=4,
∴B(4,0)
∴AB=4-(-)=4.5;
故答案为:4.5;
(2)∵已知直线x=a(a>1)分别与l1、l2相交于C,D两点,
设C点坐标为(a,y1),D点坐标为(a,y2),
∴y1=2a+1,y2=﹣a+4
∵CD=2
∴
解得a=或a=
∵a>1
∴a=.
故答案为:.
【点睛】
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.
3、x≠0
【解析】
【分析】
由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.
【详解】
解:函数的定义域是:x≠0.
故答案为:x≠0.
【点睛】
本题考查求函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
4、
【解析】
【分析】
根据y随x的增大而减小及即可得出结论.
【详解】
∵点A(3,y1,),B(-2,y2)都在直线y=kx+b的图像上,且y随x的增大而减小,
∴.
故答案为:.
【点睛】
本题考查的是一次函数图象上点的坐标特点,根据一次函数的增减性判断y1与y2的大小关系是解答此题的关键.
5、 100 a=32+1.8b
【解析】
【分析】
(1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;
(2)由表格数据规律,得到华氏温度=摄氏温度+32,据此解题.
【详解】
解:(1)设华氏温度与摄氏温度满足的一次函数关系为:
代入(10,50)(20,68)得
当时,
故答案为:100;
(2)由(1)得,华氏温度=摄氏温度+32,
若华氏温度为a,摄氏温度为b,
则把摄氏温度转化为华氏温度的公式为:a= +32,
故答案为:a=32+1.8b.
【点睛】
本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.
三、解答题
1、2
【解析】
【分析】
根据正比例函数得出|k-3|=1,解得解得k1=4, k2=2,函数值y随x的增大而减小,可得k-3<0,根据不等式解集取舍即可.
【详解】
解:根据题意,可得|k-3|=1且k-3<0,
∴k-3=1或k-3=-1,
解得k1=4, k2=2,
∵k-3<0,
∴k<3,
∴k=2.
【点睛】
本题考查正比例函数定义以及自变量函数性质,掌握正比例函数定义以及自变量函数性质是解题关键.
2、(1)y=0.8x,0.8;(2)y2=0.4x+3;(3)见解析;(4)8台
【解析】
【分析】
(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;
(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;
(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;
(4)根据:商场每天利润=电脑的销售收入−每天的总成本,列出函数关系式,根据题意得到不等式,解不等式即可.
【详解】
解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,
每台电脑的售价为:=0.8(万元);
(2)根据题意,商场每天的总成本y2=0.4x+3;
(3)如图所示,
(3)商场每天的利润W=y-y2=0.8x-(0.4x+3)=0.4x-3,
当W>0,即0.4x-3>0时商场开始盈利,解得:x>7.5.
答:每天销售量达到8台时,商场可以盈利.
【点睛】
本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是解题关键.
3、(1)见解析;(2)组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多
【解析】
【分析】
(1)根据甲旅行社的收费方案写出甲的函数关系;根据乙旅行社的收费方案,分x≤3和x>3两种情况写出函数关系式即可;
(2)把x=20分别代入函数关系式计算,然后判断即可;根据所需费用一样列出方程,然后求解即可.
【详解】
解:(1)甲旅行社:y=300x,
乙旅行社:x≤3时,y=350x,
x>3时,y=350(x-3)=350x-1050;
(2)当x=20时,
甲:y=300×20=6000元,
乙:y=350×20-1050=5950元;
所以组织20人的旅行团时,选乙家旅行社比较合算;
300x=350x-1050,
解得x=21,
答:组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多.
【点睛】
本题考查了一次函数的应用,读懂题目信息,理解两家旅行社的收费方法是解题的关键.
4、(1)证明见解析,(2)(8,2).
【解析】
【分析】
(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
【详解】
(1)证明:过点C作CQ⊥OA于Q,
∵点B的坐标是,点C的坐标为,
∴CQ=OB=4,
∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
∴△CQA≌△BOA,
∴CA=AB,
∴点A为线段BC的中点.
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
∵,
∴∠CRB=∠DSB=∠CBD=90°,
∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
∴∠CBR=∠SDB,
∵,
∴∠BCD=∠BDC=45°,
∴CB=DB,
∴△CRB≌△BSD,
∴CR=SB,RB=DS,
∵点B的坐标是,点C的坐标为,
∴CR=SB=6,RB=DS=8,
∴OS=SB-OB=2,
点D的坐标为(8,2).
【点睛】
本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
5、(1)购进A种饮料箱,则购进B种饮料箱;(2)求购进种饮料箱时,可获得最大利润,最大利润是元
【解析】
【分析】
(1)设购进A种饮料箱,则购进B种饮料箱,根据两种饮料的成本乘以数量等于6500元,列出二元一次方程即可解决问题;
(2)根据利润等于销售价减去成本再乘以销量,列出与的函数关系式,进而根据一次函数的性质求得最大值
【详解】
(1)设购进A种饮料箱,则购进B种饮料箱,根据题意得
解得
答:购进A种饮料箱,则购进B种饮料箱
(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,
则
随的增大而减小,
又
时,可获得最大利润,最大利润是(元)
【点睛】
本题考查了二元一次方程组的应用,一次函数的应用,根据题意列出关系式和方程组是解题的关键.
相关试卷
这是一份数学八年级下册第十四章 一次函数综合与测试课后作业题,共27页。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共23页。试卷主要包含了点A个单位长度.,一次函数的一般形式是,变量,有如下关系,直线y=2x-1不经过的象限是等内容,欢迎下载使用。
这是一份初中北京课改版第十四章 一次函数综合与测试练习题,共22页。试卷主要包含了若点在第三象限,则点在.,下列命题为真命题的是等内容,欢迎下载使用。