搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案解析)

    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案解析)第1页
    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案解析)第2页
    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案解析)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十七章 方差与频数分布综合与测试课后复习题

    展开

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试课后复习题,共23页。试卷主要包含了一组数据,在一次射击训练中,甲,2020年某果园随机从甲,下列说法正确的是等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是(  )A.20m3 B.52m3 C.60m3 D.100m32、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差6.20.256.00.585.80.126.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选(    A.甲 B.乙 C.丙 D.丁3、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是(  )A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元4、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是(    A.平均数为30,方差为8 B.平均数为32,方差为8C.平均数为32,方差为20 D.平均数为32,方差为185、一组数据:1,3,3,4,5,它们的极差是(    A.2 B.3 C.4 D.56、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是(    A.乙比甲稳定 B.甲比乙稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比7、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵.每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示: 25252421s22.22.02.12.0今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植.应选的品种是(    A.甲 B.乙 C.丙 D.丁8、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有(  )A.32人 B.40人 C.48人 D.50人9、下列说法正确的是(  )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定10、2020年6月1日《苏州市生活垃圾分类管理条例》正式实施.为了配合实施垃圾分类,让同学们了解垃圾分类的相关知识.八年级某班甲、乙、丙、丁四个小组的同学参加了年级“垃圾分类知识”预赛,四个小组的平均分相同,下面表格为四个小组的方差.若要从中选出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选(     方差3.63.543.2A.甲组 B.乙组 C.丙组 D.丁组第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊____只.2、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______. 4444421.71.51.7 3、某班50名学生参加2013年初中毕业生毕业考试,综合评价等级为ABC等的学生情况如扇形图所示,该学校共有500人参加毕业考试,估计该学校得A等的学生有______名.4、某校八年级(1)班甲、乙两名同学在10次射箭成绩情况如下表所示,体育老师根据这10次成绩,会选择______同学参加比赛.(填“甲”或“乙”) 平均数(环)众数(环)中位数(环)方差(环)8.7991.58.71093.2 5、某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差4513514918045135151130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)其中正确的命题是___________.(只填序号)三、解答题(5小题,每小题10分,共计50分)1、今年12月4日是第八个国家宪法日,宪法是国家的根本大法,是治国安邦的总章程.为贯彻落实习近平总书记关于宪法学习宣传教育的系列重要指示精神,某校开展了丰富多彩的宪法宣传教育活动,并分别在活动前后举办了有关学宪法的知识竞赛(百分制),活动结束后,在七年级随机抽取25名学生活动前后的竞赛成绩进行整理和描述,下面给出部分信息:活动后被抽取学生竞赛成绩为:82, 88, 96, 98, 84, 86, 89, 99, 94, 90, 79, 91, 99, 98, 87, 92, 86, 99, 98, 84, 93, 88, 94, 89, 98.活动后被抽取学生竞赛成绩频数分布表成绩x(分)频数(人)75≤x<80180≤x<85385≤x<90790≤x<95m95≤x<100n请你根据以上信息解决下列问题:(1)本次调查的样本容量是       ,表中m=      n=         (2)若想直观地反映出活动前后被抽取学生竞赛成绩的变化情况,应该把数据整理,绘制成        统计图;(填“扇形”“条形”或“折线”)(3)若90分及以上都属于A等级,根据调查结果,请估计该校2000名同学中活动后的竞赛成绩为A等级的学生有多少人?2、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:请根据图中提供的信息,完成下列问题:(1)在这次调查中,一共抽查了          名学生;(2)“羽毛球”部分的学生有          人,并补全统计图;(3)“足球”部分所对应的圆心角为          度;(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:食堂平均数211196中位数a215众数b230极差188c甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a     b     c     ,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图.请你结合图中信息解答下列问题:(1)该校共调查了多少名学生;(2)补全条形统计图;(3)若该校共有2000名学生,估计对“卓越”最感兴趣的学生有多少人?5、贵州省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名? -参考答案-一、单选题1、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】由此可估计全班同学的家庭一个月节约用水的总量是故选:B.【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.2、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.3、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.4、D【分析】由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.【详解】解: 样本的平均数为10,方差为2, 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.5、C【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】极差是故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.6、A【分析】根据方差的性质解答.【详解】解:∵甲乙两人的方差分别是=1.2,=1.1,∴乙比甲稳定,故选:A.【点睛】此题考查了方差的性质:方差越小越稳定.7、B【分析】首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可.【详解】根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,故选B.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.8、D【分析】根据频率=频数总数,求解即可.【详解】解:根据频率=频数总数,即总数=频数频率,则参加比赛的同学共有40÷0.8=50(人),故选:D.【点睛】本题考查了频数与频率,记住公式:频率=频数总数是解题的关键.9、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.10、D【分析】在平均分数相同的情况下,方差越小,波动越小,成绩越稳定,即可得出选项.【详解】解:由图标可得:∵四个小组的平均分相同,∴若要从中选出一个实力更平均的小组代表年级参加学校决赛,应选择丁组,故选:D.【点睛】题目主要考查了方差,理解方差反映数据的波动程度,当平均数相同时,方差越大,波动性越大是解题关键.二、填空题1、400【分析】设这个地区有黄羊x只,根据第二次捕捉40只绵羊,其中有2只有记号,即可列方程求解.【详解】设这个地区有黄羊x只,由题意得解得则估计这个地区有黄羊400只.故答案为:400【点睛】本题考查的是用样本估计总体,解答本题的关键是读懂题意,得到第二次捕捉的绵羊中有记号的占全部有记号的比例.2、乙【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又乙的方差比甲小,所以乙的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.3、100【分析】根据各部分的和可以看作整体1,求得A等的所占百分比,A等学生占该班人数的百分比乘以总人数即A等的人数.【详解】解:500×(1-30%-50%)=100.故答案为:100.【点睛】本题考查扇形统计图,解题的关键是记住百分比,总人数,所占人数之间的关系.4、甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙两名同学平均数相同且S2S2∴甲的成绩较稳定,∴从稳定性角度考虑,会选择甲同学参加比赛.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、(2)(3)【分析】平均数表示一组数据的平均程度,根据表示确定两班的平均成绩,进而判断说法(1);由于方差是用来衡量一组数据波动大小的量,通过比较两班的方差,就能对(2)的说法进行分析;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),进而判断(3)的正误.【详解】解:两个班的平均成绩均为135次,故(1)错误;方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故(2)正确;中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故(3)正确.综上可得三个说法中只有(2)(3)正确.故答案为:(2)(3).【点睛】本题考查了平均数、中位数、方差的意义,平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.三、解答题1、(1)25,6,8(2)折线(3)1120人【分析】(1)由题意可知随机抽取样本容量为25,查取学生竞赛成绩的人数即为的值,的人数即为的值.(2)折线统计图可以反映数据变化.(3)等级的频率为,进而估计名同学成绩为等级的学生人数.(1)解:由题意可知样本容量为25,   m=6, n=8故答案为:25,6,8.(2)解:折线统计图可以反映数据变化故答案为:折线.(3)解:∵等级的频率为∴该校2000名同学中活动后的竞赛成绩为等级的学生有人.【点睛】本题考查了数据统计.解题的关键在于正确查取各成绩区间学生个数.2、(1);(2);作图见解析;(3);(4)【分析】(1)篮球人数为,占总人数的,可以得到调查学生总人数;(2)羽毛球部分的学生占总人数的,可得到羽毛球部分的学生人数;(3)足球部分为人,占总人数的,占圆心角的,可得到足球部分对应圆心角的大小;(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.【详解】解(1)设调查学生总人数为则有解得故答案为(2)羽毛球部分的学生占总人数的羽毛球的人数为故答案为统计图补充如图所示:(3)由图知足球部分的人数为足球部分占总人数的足球部分对应圆心角的大小为故答案为(4)跳绳人数占比为该校喜欢跳绳的人数有(人);答:该校有240名学生喜欢跳绳【点睛】本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,a=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.4、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;
    (2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;
    (3)用最感兴趣为“卓越”所占百分比乘以2000即可.【详解】解:(1)150÷30%=500(名),∴该校共调查了500名学生;(2)最感兴趣为“尚德”的人数=500−150−50−125−75=100(名),
    补全图形如图:
    (3)∵最感兴趣为“卓越”所占百分比=×100%=15%,∴2000×15%=300(名)
    所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名.【点睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.5、 (1) 120(名);(2) 补全统计图见详解(3)855(名).【分析】(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;(2) 利用(1)中的数据计算出C组的人数,在计算出AB的百分比即可;(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比×总人数计算出人数即可.【详解】解:(1)抽样调查的学生人数为6÷5%=120(名);(2)A的百分比:×100%=30%,B的百分比:×100%=45%,C组的人数:120×20%=24名;  补全统计图,如图所示:
    (3)对“节约教育”内容“了解较多”的有1900×45%=855(名).【点睛】本题考查的是条形统计图和扇形统计图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共18页。试卷主要包含了在一次射击训练中,甲,2020年某果园随机从甲,已知一组数据的方差s2=[等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共21页。试卷主要包含了一组数据a-1,某排球队6名场上队员的身高等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map