北京课改版八年级下册第十七章 方差与频数分布综合与测试习题
展开这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共22页。试卷主要包含了数学老师将本班学生的身高数据等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是( )
A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.4
2、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为( )
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
质量(千克) | 44 | 51 | 57 | 47 | 48 | 50 | 49 | 53 | 49 | 52 |
A.500千克,7500元 B.490千克,7350元
C.5000千克,75000元 D.4850千克,72750元
3、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是( )
A.20m3 B.52m3 C.60m3 D.100m3
4、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )
A.该班共有学生60人
B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内
C.某同学身高155厘米,那么班上恰有10人比他矮
D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%
5、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )
甲 | 2 | 6 | 7 | 7 | 8 |
乙 | 2 | 3 | 4 | 8 | 8 |
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
6、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是( )
| ||||
平均成绩(分) | 95 | 98 | 96 | 98 |
方差 | 3 | 3 | 2 | 2 |
A. B. C. D.
7、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲与乙一样稳定 D.无法确定
8、中学生骑电动车上学给交通安全带来隐患,为了了解某中学个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是( )
A.调查方式是普查 B.该校只是个家长持反对态度
C.样本是个家长 D.该校约有的家长持反对态度
9、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )
A.本次共随机抽取了40名学生;
B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;
C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;
D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;
10、2020年6月1日《苏州市生活垃圾分类管理条例》正式实施.为了配合实施垃圾分类,让同学们了解垃圾分类的相关知识.八年级某班甲、乙、丙、丁四个小组的同学参加了年级“垃圾分类知识”预赛,四个小组的平均分相同,下面表格为四个小组的方差.若要从中选出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
方差 | 3.6 | 3.5 | 4 | 3.2 |
A.甲组 B.乙组 C.丙组 D.丁组
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校九年级进行了3次体育中考项目—1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是=0.01,=0.009,=0.0093.则甲、乙、丙三位同学中成绩最稳定的是________.
2、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为、,则身高较整齐的球队是________队(填“甲”或“乙”).
3、如果一组数据,,…,的方差是2,那么一组新数据,,…,的方差是__________.
4、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.
5、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.
三、解答题(5小题,每小题10分,共计50分)
1、萌萌同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生都只选择了一门课程).将获得的数据整理绘制了两幅不完整的统计图.
据统计图提供的信息,解答下列问题:
(1)在这次调查中一共抽取了 名学生;
(2)请根据以上信息补全条形统计图;
(3)扇形统计图中,“语文”所对应的圆心角度数是 度;
(4)若该校九年级共有1200名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对物理感兴趣.
2、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.
3、 “中国梦”是中华民族每一个人的梦,各中小学开展经典诵读活动,是“中国梦”教育这一宏大乐章里的响亮音符某学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)共抽取了多少名学生进行调查;
(2)将图甲中的条形统计图补充完整;
(3)求出图乙中D等级所对应的扇形圆心角的度数;
(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得B等级的评价.
4、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图
根据图中提供的信息,解决下列问题:
(1)此次共调查了 名学生;
(2)请补全类条形统计图;
(3)扇形统计图中.类所对应的扇形圆心角的大小为 度;
(4)该校共有1560名学生,估计该校表示“很喜欢”的类的学生有多少人?
5、贵州省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:
(1)本次抽样调查了多少名学生?
(2)补全两幅统计图;
(3)若该中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?
-参考答案-
一、单选题
1、D
【分析】
根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得
【详解】
依题意,成绩分式为整数,则大于80.5的频数为5+3=8,
学生总数为.
则频率为.
故选D.
【点睛】
本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.
2、C
【分析】
先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.
【详解】
解:选出的10棵油桃树的平均产量为:
=50(千克),
估计100棵油桃树的总产量为:50×100=5000(千克),
按批发价的总收入为:15×5000=75000(元).
故选C.
【点睛】
本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.
3、B
【分析】
利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.
【详解】
,
由此可估计全班同学的家庭一个月节约用水的总量是.
故选:B.
【点睛】
本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.
4、B
【分析】
由两幅统计图的数据逐项计算判断即可.
【详解】
解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;
根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;
根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;
根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
5、D
【分析】
根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.
【详解】
解:A.甲的众数为7,乙的众数为8,故此项错误;
B.甲的中位数为7,乙的中位数为4,故此项错误;
C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;
D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;
故选:D.
【点睛】
此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.
6、D
【分析】
先根据平均成绩选出,然后根据方差的意义求出
【详解】
解:根据平均数高,平均成绩好得出的性能好,
根据方差越小,数据波动越小可得出的性能好,
故选:D
【点睛】
本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键
7、C
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
8、D
【分析】
根据抽查与普查的定义以及用样本估计总体解答即可.
【详解】
解:.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;
.在调查的400个家长中,有360个家长持反对态度,该校只有个家长持反对态度,故本项错误,不符合题意;
.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;
.该校约有的家长持反对态度,本项正确,符合题意,
故选:D.
【点睛】
本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.
9、D
【分析】
由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:乘以该组人数所占抽查总人数得比例即可判断D选项.
【详解】
解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,
∴抽查总人数为:,A选项正确;
60~80分钟的人数为:人,
先对数据排序后可得:最中间的数在第20,21之间,
,,
∴中位数落在60~80分钟这一组,故B选项正确;
从图中可得,每天超过1小时的人数为:人,
估算全校人数中每天超过1小时的人数为:人,故C选项正确;
0~20分钟这一组有4人,
扇形统计图中这一组的圆心角为:,故D选项错误;
故选:D.
【点睛】
题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.
10、D
【分析】
在平均分数相同的情况下,方差越小,波动越小,成绩越稳定,即可得出选项.
【详解】
解:由图标可得:,
∵四个小组的平均分相同,
∴若要从中选出一个实力更平均的小组代表年级参加学校决赛,应选择丁组,
故选:D.
【点睛】
题目主要考查了方差,理解方差反映数据的波动程度,当平均数相同时,方差越大,波动性越大是解题关键.
二、填空题
1、乙
【分析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵s甲2=0.01,s乙2=0.009,s丙2=0.0093,
∴s乙2<s丙2<s甲2,
∴甲、乙、丙三位同学中成绩最稳定的是乙.
故答案为:乙.
【点睛】
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、甲
【分析】
根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
解:∵S2甲<S2乙
∴身高较整齐的球队是甲队.
故答案为:甲.
【点睛】
本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
3、
【分析】
设一组数据,,…,的平均数为,方差是,则另一组数据,,…,的平均数为,方差是,代入方差公式,计算即可.
【详解】
解:设一组数据,,…,的平均数为,方差是,则另一组数据,,…,的平均数为,方差是,
∵,
∴,
则,
∴,
∴,
.
【点睛】
本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据,,…,的方差是,那么另一组数据,,,的方差是.
4、最大值与最小值 组距 组数 频数分布表 频数分布直方图
【分析】
根据频数分布直方图的步骤即可得出
【详解】
分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距和组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.
故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图
【点睛】
本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,
5、0.75
【分析】
根据频率=频数÷总数进行求解即可.
【详解】
解:∵小亮在10分钟之内罚球20次,共罚进15次,
∴小亮点球罚进的频率是,
故答案为:0.75.
【点睛】
本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.
三、解答题
1、(1)50;(2)见解析;(3)64.8;(4)192.
【分析】
(1)用喜欢化学的人数除以它所占的百分比得到调查的总人数;
(2)先计算出对数学感兴趣的人数,然后补全条形统计图;
(3)用对语文感兴趣的人数的百分比乘以360°即可;
(4)用1200乘以样本中对物理感兴趣的人数的百分比即可.
【详解】
解:(1)10÷20%=50,
所以在这次调查中一共抽取了50名学生,
故答案为:50;
(2)对数学感兴趣的人数为50﹣9﹣5﹣8﹣10﹣3=15(人),
补全条形统计图为:
(3)扇形统计图中,“语文”所对应的圆心角度数为360°×=64.8°,
故答案为:64.8;
(4)1200×=192,
所以估计该校九年级学生中有192名学生对物理感兴趣.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙
【分析】
(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的平均成绩,再根据方差公式进行计算;
(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.
【详解】
解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),
则中位数是9.5分;
乙队成绩中10出现了4次,出现的次数最多,
则乙队成绩的众数是10分;
故答案为:9.5,10;
(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,
则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;
(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,
∴成绩较为整齐的是乙队;
故答案为:乙.
【点睛】
本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
3、(1)100名;(2)图见解析;(3);(4)700.
【分析】
(1)根据等级的条形统计图和扇形统计图的信息即可得;
(2)根据(1)的结果,求出等级的学生人数,再补全条形统计图即可;
(3)利用乘以等级所占的百分比即可得;
(4)利用2000乘以等级所占的百分比即可得.
【详解】
解:(1)抽取调查的学生总人数为(名),
答:共抽取了100名学生进行调查;
(2)等级的人数为(名),
则补全条形统计图如下:
(3)图乙中等级所对应的扇形圆心角的度数为,
答:图乙中等级所对应的扇形圆心角的度数;
(4)(名),
答:估计有700名学生获得等级的评价.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.
4、(1)60;(2)补全统计图见详解;(3);(4)估计该校表示“很喜欢”的A类的学生有260人.
【分析】
(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可;
(2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;
(3)根据前面的结论,计算出B类人数占总调查人数的比值,将计算结果乘即可得出扇形圆心角的度数;
(4)利用调查样本所占的百分比估计总体学生数即可.
【详解】
解:(1)此次调查学生总数:(人),
故答案为:60;
(2)D类人数为:(人),
补全条形统计图,如图所示,
(3)扇形统计图中,B类所对应的扇形圆心角的大小为:,
故答案为:;
(4)(人).
∴估计该校表示“很喜欢”的A类的学生有260人.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.
5、 (1) 120(名);(2) 补全统计图见详解(3)855(名).
【分析】
(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;
(2) 利用(1)中的数据计算出C组的人数,在计算出A和B的百分比即可;
(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比×总人数计算出人数即可.
【详解】
解:(1)抽样调查的学生人数为6÷5%=120(名);
(2)A的百分比:×100%=30%,
B的百分比:×100%=45%,
C组的人数:120×20%=24名;
补全统计图,如图所示:
(3)对“节约教育”内容“了解较多”的有1900×45%=855(名).
【点睛】
本题考查的是条形统计图和扇形统计图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题,共20页。试卷主要包含了一组数据,某排球队6名场上队员的身高等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共22页。试卷主要包含了下列一组数据等内容,欢迎下载使用。