终身会员
搜索
    上传资料 赚现金

    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评试题(含解析)

    立即下载
    加入资料篮
    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评试题(含解析)第1页
    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评试题(含解析)第2页
    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评试题(含解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十四章 一次函数综合与测试复习练习题

    展开

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试复习练习题,共27页。试卷主要包含了在下列说法中,能确定位置的是,若一次函数y=kx+b等内容,欢迎下载使用。


    京改版八年级数学下册第十四章一次函数综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    2、如图,每个小正方形的边长为1,在阴影区域的点是(   )

    A.(1,2)  B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)
    3、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
    4、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为(  )
    A.2 B.-1 C.-2 D.4
    5、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1y2,则k的值可能是( )
    A.k=0 B.k=1 C.k=2 D.k=3
    6、在下列说法中,能确定位置的是( )
    A.禅城区季华五路 B.中山公园与火车站之间
    C.距离祖庙300米 D.金马影剧院大厅5排21号
    7、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为(  )
    A.x<0 B.x>0 C.x>1 D.x<1
    8、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是(  )

    A.关于x的不等式ax+b>0的解集是x>2
    B.关于x的不等式ax+b<0的解集是x<2
    C.关于x的方程ax+b=0的解是x=4
    D.关于x的方程ax+b=0的解是x=2
    9、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系.则下列说法错误的是(  )

    A.乙摩托车的速度较快
    B.经过0.3小时甲摩托车行驶到A,B两地的中点
    C.当乙摩托车到达A地时,甲摩托车距离A地km
    D.经过0.25小时两摩托车相遇
    10、在平面直角坐标系中,点P(-2,3)在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _____.

    2、已知一次函数(、是常数,)的图像与轴交于点,与轴交于点.若,则的取值范围为______.
    3、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.
    4、平面直角坐标系中,点O为坐标原点,点A(4,2)、点B(0,5),直线y=kx﹣2k+1恰好将△ABO平均分成面积相等的两部分,则k的值是_________.
    5、甲、乙两人相约周末登山,甲、乙两人距地面的高度y/m与登山时间x/min之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)b=_______m;
    (2)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则登山_______min时,他们俩距离地面的高度差为70m.

    三、解答题(5小题,每小题10分,共计50分)
    1、为了抗击新冠疫情,全国人民众志成城,守望相助.某地一水果购销商安排15辆汽车装运,,这3种水果共120吨进行销售,所得利润全部捐给国家抗疫.已知15辆汽车都要装满,且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆.汽车对不同水果的运载量和销售每吨水果获利情况如下表所示:
    水果品种



    汽车运载量(吨/辆)
    10
    8
    6
    水果获利(元/吨)
    800
    1200
    1000

    (1)设装运种水果的车辆数为辆,装运种水果的车辆数为辆
    ①求与之间的函数关系式;
    ②设计车辆的安排方案,并写出每种安排方案.
    (2)若原有获利不变的情况下,当地政府按每吨60元的标准实行运费补贴.该经销商打算将获利连同补贴全部捐出.问:哪种车辆安排方案可以使这次捐款数(元)最多?捐款数最多是多少?
    2、在平面直角坐标系中,A(a,0),B(b,0),C(c,0),a≠0且a,b,c满足条件.
    (1)直接写出△ABC的形状 ;
    (2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°
    ① 如图1,当点E与点C重合时,求AD的长;
    ② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;

    3、利用函数图象解方程组.
    4、实际情境:甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米,小狗遇到乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直跑下去.
    数学研究:如图,折线、分别表示甲、小狗在行进过程中,离乙的路程y(km)与甲行进时间x(h)之间的部分函数图像.

    (1)求线段AB对应的函数表达式;
    (2)求点E的坐标;
    (3)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x为何值时,它离乙的路程与它离甲的路程相等?
    5、已知直线l1:y=-x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1.
    (1)求直线l1的解析式;
    (2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时点P的坐标;
    (3)E点的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.


    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
    【详解】
    解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
    乙车行驶280千米需要的时间为:小时,
    所以甲车返回的速度为:千米/时,故②符合题意;
    由小时,所以 故③符合题意,
    当乙车行驶2小时时,行驶的路程为:千米,
    此时甲车行驶1小时,千米,
    所以两车相距:千米,
    当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
    此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
    距离A地千米,所以两车相距千米,故④不符合题意;
    综上:故选B
    【点睛】
    本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
    2、C
    【解析】
    【分析】
    根据平面直角坐标系中点的坐标的表示方法求解即可.
    【详解】
    解:图中阴影区域是在第二象限,
    A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;
    B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;
    C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;
    D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.
    故选:C.
    【点睛】
    此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
    3、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.
    【详解】
    解:∵一次函数y=−2x+1中,k=−2<0,
    ∴y随着x的增大而减小.
    ∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.
    4、C
    【解析】
    【分析】
    首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.
    【详解】
    解:由题意得:x=1时,y=k+3,
    ∵在x=1处,自变量增加2,函数值相应减少4,
    ∴x=3时,函数值是k+3-4,
    ∴3k+3=k+3-4,
    解得:k=-2,
    故选C.
    【点睛】
    此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.
    5、A
    【解析】
    【分析】
    利用一次函数y随x的增大而减小,可得,即可求解.
    【详解】
    ∵当x1y2
    ∴一次函数y=(k)x+2的y随x的增大而减小


    ∴k的值可能是0
    故选:A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.
    6、D
    【解析】
    【分析】
    根据确定位置的方法逐一判处即可.
    【详解】
    解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
    B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
    C、距离祖庙300米,有距离但没有方向,故不符合题意;
    D、金马影剧院大厅5排21号,确定了位置,故符合题意.
    故选:D
    【点睛】
    本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
    7、D
    【解析】
    【分析】
    利用函数的增减性和x=1时的函数图像上点的位置来判断即可.
    【详解】
    解:如图所示:k>0,函数y= kx+b随x的增大而增大,直线过点B(1,1),
    ∵当x=1时,kx+b=1,即kx+b-1=0,
    ∴不等式kx+b﹣1<0的解集为:x<1.
    故选择:D.

    【点睛】
    此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.
    8、D
    【解析】
    【分析】
    直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.
    【详解】
    解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;
    B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;
    C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;
    D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;
    故选:D.
    【点睛】
    本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.
    9、D
    【解析】
    【分析】
    由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题.
    【详解】
    解:由图可得,
    甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;
    甲的速度为:20÷0.6=(km/h),则甲行驶0.3h时的路程为:×0.3=10(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;
    当乙摩托车到达A地时,甲摩托车距离A地:×0.5=(km),故选项C正确;
    乙的速度为:20÷0.5=40(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;
    故选:D.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答.
    10、B
    【解析】
    【分析】
    根据点横纵坐标的正负分析得到答案.
    【详解】
    解:点P(-2,3)在第二象限,
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    观察函数图象可得当时,直线直线:在直线:的下方,于是得到不等式的解集.
    【详解】
    解:根据图象可知,不等式的解集为.
    故答案为:.
    【点睛】
    本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.
    2、
    【解析】
    【分析】
    将已知点、代入后可得,再根据的取值范围可得的取值范围.
    【详解】
    解:∵一次函数(、是常数,)的图像与轴交于点,与轴交于点,
    ∴,
    ∴,
    ∵,
    ∴,即.
    故答案为:.
    【点睛】
    本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得和的关系是解题关键.
    3、(﹣3,1)
    【解析】
    【分析】
    点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.
    【详解】
    解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).
    故答案为:(﹣3,1).
    【点睛】
    本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.
    4、﹣2
    【解析】
    【分析】
    由题意可得直线y=kx﹣2k+1恒过,进而依据直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,代入点B(0,5)即可求解.
    【详解】
    解:如图,

    由,可知当,不论k取何值,,
    即直线y=kx﹣2k+1恒过,
    又因为点O为坐标原点,点A(4,2),可知为OA中点,
    可知当直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,
    所以代入点B(0,5)可得:,解得:.
    故答案为:.
    【点睛】
    本题考查一次函数解析式与三角形的综合,熟练掌握三角形的中线平分三角形的面积是解题的关键.
    5、 30 3、10、13
    【解析】
    【分析】
    (1)根据路程与时间求出乙登山速度,再求2分钟路程即可;
    (2)先求甲速度,再求出乙提速后得速度,再用待定系数法求AB与CD解析式,根据解析式组成方程组求出相遇时间,利用两函数之差=70建构方程求出相遇后相差70米的时间或乙到终点相距70米的时间即可.
    【详解】
    解:(1)内乙的速度为15÷1=15m/min,
    ∴;
    (2)甲登山上升速度是(m/min),乙提速后速度是(m/min).
    (min).
    设甲函数表达式为,
    把(0,100),(20,300)代入,
    得解得
    .
    设乙提速前的函数表达式为.
    把(1,15)代入,得,

    设乙提速后的函数表达式为,
    把(2,30),(11,300)代入,得解得

    当时,解得;
    当时,解得;
    当时,解得.
    综上所述:登山3min、10min、13min时,他们俩距离地面的高度差为70m.
    【点睛】
    本题考查一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程,掌握一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程是解题关键.
    三、解答题
    1、(1)①y=15-2x;②有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)采用A、B、C三种的车辆数分别是:3辆、9辆、3辆;捐款数最多是134400元.
    【解析】
    【分析】
    (1)①等量关系为:车辆数之和=15,由此可得出x与y的关系式;
    ②由题意,列出不等式组,求出x的取值范围,即可得到答案;
    (2)总利润为:装运A种水果的车辆数×10×800+装运B种水果的车辆数×8×1200+装运C种水果的车辆数×6×1000+运费补贴,然后按x的取值来判定.
    【详解】
    解:(1)①设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,则装C种水果的车辆是(15-x-y)辆.
    则10x+8y+6(15-x-y)=120,
    即10x+8y+90-6x-6y=120,
    则y=15-2x;
    ②根据题意得:
    15-2x≥3x≥315-x-(15-2x)≥3,
    解得:3≤x≤6.
    则有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;
    (2)w=10×800x+8×1200(15-2x)+6×1000[15-x-(15-2x)]+120×50
    =-5200x+150000,
    根据一次函数的性质,当x=3时,w有最大值,是-5200×3+150000=134400(元).
    应采用A、B、C三种的车辆数分别是:3辆、9辆、3辆.
    【点睛】
    本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键.
    2、(1)等腰三角形,证明见解析;(2)①;②
    【解析】
    【分析】
    (1)先证明 再证明 从而可得答案;
    (2)① 先证明是等边三角形,可得 再证明
    再利用含的直角三角形的性质求解 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFD(AAS), 可得AC=EF,再求解BD=,CF=CD=, 再求解OE=, 从而可得答案.
    【详解】
    解:(1) ,

    解得:
    A(,0),B(b,0),C(3,0),


    是等腰三角形.
    (2)① ∠ACB=120°,∠ADE=60°,

    是等边三角形,









    ②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:

    ∵AC=BC,∠ACB=120°,
    ∴∠ACO=∠BCO=60°,
    ∴△CDF是等边三角形,
    ∴∠CFD=60°,CD=FD,
    ∴∠EFD=120°,
    ∵∠ACO=∠ADE=60°,
    ∴∠CAD=∠CED,
    又∵∠ACD=∠EFD=120°,
    ∴△ACD≌△EFD(AAS),
    ∴AC=EF, 由(1)得:c=3, ∴OC=3,
    ∵∠AOC=90°,∠ACO=60°,
    ∴∠OAC=30°,
    ∴BC=AC=2OC=6,EF=AC=6,
    ∵CD=2BD, ∴BD=,CF=CD=,
    ∴CE=EF+CF=,
    ∴OE=CE-OC=,

    【点睛】
    本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键.
    3、x=-1y=1.
    【解析】
    【分析】
    直接利用两函数图象的交点横纵坐标即为x,y的值进而得出答案.
    【详解】
    解:方程组对应的两个一次函数为:y=-32x-12与y=2x+3,
    画出这两条直线,如图所示:

    由图像知两直线交点坐标为(-1,1).
    所以原方程组的解为x=-1y=1.
    【点睛】
    此题主要考查了一次函数与二元一次方程组的解,正确利用数形结合分析是解题关键.
    4、(1);(2);(3)或
    【解析】
    【分析】
    (1)利用待定系数法求线段AB对应的函数表达式即可;
    (2)设DE对应的函数表达式为,根据k的几何意义可,将点D坐标代入求得b',再与线段AB解析式联立方程组求出交点E坐标即可;
    (3)利用待定系数法求线段AD对应的函数解析式,分y1=2y3和y1=2y2求解x值即可.
    【详解】
    解:(1)设线段AB对应的函数表达式为,
    由图像得,当时,,当时,,代入得:,
    解得:,
    ∴线段AB对应的函数表达式为(0≤x≤2);
    (2)设线段DE对应的函数表达式为,
    由题意得,,
    将代入,得,
    ∴线段DE对应的函数表达式为,
    ∵点E是线段AB和线段DE的交点,故E满足:
    ,解得:,
    ∴;
    (3)设线段AD对应的函数表达式为,
    将A(0,4)、代入,得:,
    解得:,
    ∴设AD对应的函数表达式为,
    由题意,分两种情况:
    当y=2y3时,由-2x+4=2(-8x+4)得:;
    当y=2y2时,由-2x+4=2(16x-8)得:,
    故当或时,它离乙的路程与它离甲的路程相等.
    【点睛】
    本题考查一次函数的应用、待定系数法求一次函数表达式,理解题意,理清图象中各点、各线段之间的关系是解答的关键.
    5、(1);(2)点的坐标;(3)点的坐标为或,或.
    【解析】
    【分析】
    (1)当时,,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;
    (2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;
    (3)①当点在直线上方,画出图形,证明,利用,,即可求解.②当点在直线下方时,同①的方法即可得出结论.③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论.
    【详解】
    解:(1)当时,,即点的坐标为,
    将点的坐标代入直线得:,解得:,
    故:直线的解析式为:;
    (2)确定点关于过点垂线的对称点、点关于轴的对称点,
    连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:

    将点、点的坐标代入一次函数表达式:得:,解得:,
    则直线的表达式为:,
    当时,,即点的坐标为,
    的值,
    即:当的值最小为时,此时点的坐标;
    (3)将、点坐标代入一次函数表达式,同理可得其表达式为
    ①当点在直线上方时,设点,点,点,
    过点、分别作轴的平行线交过点与轴的平行线分别交于点、,

    ,,

    ,,

    ,,
    即,解得.
    故点的坐标为,
    ②当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,

    同①的方法得,,
    ③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得


    即:点的坐标为,或,.
    【点睛】
    本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点.

    相关试卷

    2020-2021学年第十四章 一次函数综合与测试达标测试:

    这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试课后作业题:

    这是一份数学八年级下册第十四章 一次函数综合与测试课后作业题,共27页。

    北京课改版八年级下册第十四章 一次函数综合与测试一课一练:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点,点P在第二象限内,P点到x等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map