初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业
展开京改版八年级数学下册第十四章一次函数专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,已知点P(5,−5),则点P在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是( )
A. B.
C. D.
3、下列命题中,真命题是( )
A.若一个三角形的三边长分别是a、b、c,则有
B.(6,0)是第一象限内的点
C.所有的无限小数都是无理数
D.正比例函数()的图象是一条经过原点(0,0)的直线
4、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )
A. B. C. D.
5、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
6、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是( )
A.关于x的不等式ax+b>0的解集是x>2
B.关于x的不等式ax+b<0的解集是x<2
C.关于x的方程ax+b=0的解是x=4
D.关于x的方程ax+b=0的解是x=2
7、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
8、一次函数y=kx-m,y随x的增大而增大,且km<0,则在坐标系中它的大致图象是( )
A. B.
C. D.
9、直线y=2x-1不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )
A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、(1)由于任何一元一次方程都可转化为____(k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为_____时,求相应的_____的值.
(2)一元一次方程kx+b=0的解,是直线y=kx+b与____轴交点的____坐标值.
2、函数的定义域是_____.
3、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为______.
4、将函数的图像向下平移2个单位长度,则平移后的图像对应的函数表达式是______.
5、如果点P(m+3,2m﹣4)在y轴上,那么m的值是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.
(1)N95型和一次性成人口罩每箱进价分别为多少元?
(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?
(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?
2、阅读下列一段文字,然后回答问题.
已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.
(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;
(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.
(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度.
3、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:
(1)当通讯时间为500分钟时,①方式收费 元,
②方式收费 元;
(2)②收费方式中y与x之间的函数关系式是 ;
(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是 (填①或②).
4、【直观想象】
如图1,动点P在数轴上从负半轴向正半轴运动,点P到原点的距离先变小再变大,当点P的位置确定时,点P到原点的距离也唯一确定;
【数学发现】
当一个动点到一个定点的距离为d,我们发现d是x的函数;
【数学理解】
动点到定点的距离为d,当 时,d取最小值;
【类比迁移】
设动点到两个定点、的距离和为y.
①尝试写出y关于x的函数关系式及相对应的x的取值范围;
②在给出的平面直角坐标系中画出y关于x的函数图像;
③当y>9时,x的取值范围是 .
5、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、D
【解析】
【分析】
若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
【详解】
解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
故选D.
【点睛】
本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
3、D
【解析】
【分析】
根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.
【详解】
解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;
B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;
C、无限不循环小数都是无理数,
D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;
故选:D
【点睛】
本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.
4、D
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答.
【详解】
解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.
故选:D.
【点睛】
本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
5、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
6、D
【解析】
【分析】
直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.
【详解】
解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;
B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;
C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;
D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;
故选:D.
【点睛】
本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.
7、A
【解析】
【分析】
由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
【详解】
解:由题意可知BO=CO,
∵又AB=AC,
∴AO⊥BC,
∴点A在y轴上,
∴选项A符合题意,
B选项三点共线,不能构成三角形,不符合题意;
选项C、D都不在y轴上,不符合题意;
故选:A.
【点睛】
本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
8、B
【解析】
【分析】
根据一次函数的性质以及有理数乘法的性质,求得、的符号,即可求解.
【详解】
解:一次函数y=kx-m,y随x的增大而增大,可得,
,可得,
则一次函数y=kx-m,经过一、三、四象限,
故选:B
【点睛】
本题考查的是一次函数的图象与系数的关系,涉及了一次函数的增减性,有理数乘法的性质,解题的关键是掌握一次函数的有关性质以及有理数乘法的性质,正确判断出、的符号.
9、B
【解析】
【分析】
根据一次函数的图象特点即可得.
【详解】
解:一次函数的一次项系数,常数项,
直线经过第一、三、四象限,不经过第二象限,
故选:B.
【点睛】
本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.
10、C
【解析】
【分析】
把两点的坐标代入函数解析式中,解二元一次方程组即可求得k与b的值,从而求得一次函数解析式.
【详解】
解:由题意得:
解得:
故所求的一次函数关系为
故选:C.
【点睛】
本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.
二、填空题
1、 kx+b=0 0 自变量 x 横
【解析】
【分析】
(1)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;
(2)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;
【详解】
解:(1)由于任何一元一次方程都可转化为kx+b=0 (k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为0时,求相应的自变量的值.
故答案为:kx+b=0,0,自变量;
(2)一元一次方程kx+b=0的解,是直线y=kx+b与x轴交点的横坐标值.
故答案为:x,横.
【点睛】
本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值.
2、
【解析】
【分析】
函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.
【详解】
解:根据题意得:3x+6≥0,
解得x≥﹣2.
故答案为:x≥﹣2.
【点睛】
本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
3、7
【解析】
【分析】
由题意得,,,即可得.
【详解】
解:由题意得,,,
则,
故答案为:7.
【点睛】
本题考查了点的坐标特征,解题的关键是理解题意.
4、
【解析】
【分析】
根据“上加下减”的原则求解即可.
【详解】
解:将直线向下平移2个单位长度,所得的函数解析式为.
故答案为:.
【点睛】
本题考查的是一次函数的图象的平移,熟知函数图象变换的法则是解答此题的关键.
5、-3
【解析】
【分析】
点P在y轴上则该点横坐标为0,可解得m的值.
【详解】
解:在y轴上,
∴m+3=0,
解得m=-3.
故答案为:-3.
【点睛】
本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.
三、解答题
1、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
【解析】
【分析】
(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;
(2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;
(3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.
【详解】
(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:
,解得: ,
答:N95型和一次性成人口罩每箱进价分别为2250元、500元.
(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:
.
解得:a≤40.∵a取正整数,0<a≤40.
∴a的最大值为40.
答:最多可购进N95型40箱.
(3)解:设购进的口罩获得最大的利润为w,
则依题意得:w=500a+100(80﹣a)=400a+8000,
又∵0<a≤40,∴w随a的增大而增大,
∴当a=40时,W=400×40+8000=24000元.
即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
答:最大利润为24000元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.
2、(1)5;(2)能,理由见解析;(3),
【解析】
【分析】
(1)根据文字提供的计算公式计算即可;
(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;
(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.
【详解】
(1)∵A、B两点在平行于y轴的直线上
∴AB=
即A、B两点间的距离为5
(2)能判定△DEF的形状
由两点间距离公式得:,
,
∵DE=DF
∴△DEF是等腰三角形
(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小
由对称性知:点G的坐标为,且PG=PF
∴PD+PF=PD+PG≥DG
即PD+PF的最小值为线段DG的长
设直线DG的解析式为,把D、G的坐标分别代入得:
解得:
即直线DG的解析式为
上式中令y=0,即,解得
即点P的坐标为
由两点间距离得:DG=
所以PD+PF的最小值为
【点睛】
本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.
3、(1)80,100;(2)y2=0.2x;(3)②
【解析】
【分析】
(1)根据题意由函数图象就可以得出①②收费;
(2)根据题意设②中y与x的关系式为y2=k2x,由待定系数法求出k2值即可;
(3)根据题意设①中y与x的关系式为y1=k1x+b,再讨论当y1>y2,y1=y2,y1<y2时求出x的取值就可以得出结论.
【详解】
解:(1)由函数图象,得:
①方式收费80元,②方式收费100元,
故答案为:80,100;
(2)设②中y与x的关系式为y2=k2x,由题意,得
100=500k2,
∴k=0.2,
∴函数解析式为:y2=0.2x;
(3)设①中y与x的关系式为y1=k1x+b,由函数图象,得:
,
解得:,
∴y1=0.1x+30,
当y1>y2时,0.1x+30>0.2x,
解得:x<300,
当y1=y2时,0.1x+30=0.2x,
解得:x=300,
当y1<y2时,0.1x+30<0.2x,
x>300,
∵200<300,
∴方式②省钱.
故答案为:②.
【点睛】
本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.
4、(数学理解)5;(类比迁移)①;②见解析;③或.
【解析】
【分析】
(数学理解)当点A、P重合时,d=0最小,据此解题;
(类比迁移)①分三种情况,分别写出相应函数解析式,再画图,即可解题;
②在坐标系中描点,连线即可画图;
③利用图象,分类讨论解题.
【详解】
解:(数学理解)当点A、P重合时,d=0最小,此时x=5,
故答案为:5;
(类比迁移)
①由题意得,当时,
当时,
当时,,
;
②画图如下,
;
③由图象得,当y>9时,有两种情况:或
解得或
故答案为:或.
【点睛】
本题考查一次函数综合题,考查函数、函数图象等知识,是重要考点,掌握相关知识是解题关键.
5、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】
(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共25页。试卷主要包含了已知一次函数y=ax+b,已知点A等内容,欢迎下载使用。
数学八年级下册第十四章 一次函数综合与测试当堂达标检测题: 这是一份数学八年级下册第十四章 一次函数综合与测试当堂达标检测题,共22页。试卷主要包含了如图,过点A,已知点A,一次函数y=mx﹣n等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共31页。